Suppr超能文献

预计海温与风向变化对比目鱼洄游的复杂影响。

Complex effect of projected sea temperature and wind change on flatfish dispersal.

机构信息

Operational Directorate Natural Environment (OD Nature), Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium.

Laboratory of Biodiversity and Evolutionary Genomics (LBEG), University of Leuven, Leuven, Belgium.

出版信息

Glob Chang Biol. 2018 Jan;24(1):85-100. doi: 10.1111/gcb.13915. Epub 2017 Oct 23.

Abstract

Climate change not only alters ocean physics and chemistry but also affects the biota. Larval dispersal patterns from spawning to nursery grounds and larval survival are driven by hydrodynamic processes and shaped by (a)biotic environmental factors. Therefore, it is important to understand the impacts of increased temperature rise and changes in wind speed and direction on larval drift and survival. We apply a particle-tracking model coupled to a 3D-hydrodynamic model of the English Channel and the North Sea to study the dispersal dynamics of the exploited flatfish (common) sole (Solea solea). We first assess model robustness and interannual variability in larval transport over the period 1995-2011. Then, using a subset of representative years (2003-2011), we investigate the impact of climate change on larval dispersal, connectivity patterns and recruitment at the nursery grounds. The impacts of five scenarios inspired by the 2040 projections of the Intergovernmental Panel on Climate Change are discussed and compared with interannual variability. The results suggest that 33% of the year-to-year recruitment variability is explained at a regional scale and that a 9-year period is sufficient to capture interannual variability in dispersal dynamics. In the scenario involving a temperature increase, early spawning and a wind change, the model predicts that (i) dispersal distance (+70%) and pelagic larval duration (+22%) will increase in response to the reduced temperature (-9%) experienced by early hatched larvae, (ii) larval recruitment at the nursery grounds will increase in some areas (36%) and decrease in others (-58%) and (iii) connectivity will show contrasting changes between areas. At the regional scale, our model predicts considerable changes in larval recruitment (+9%) and connectivity (retention -4% and seeding +37%) due to global change. All of these factors affect the distribution and productivity of sole and therefore the functioning of the demersal ecosystem and fisheries management.

摘要

气候变化不仅改变了海洋物理和化学特性,还影响了生物群。幼虫从产卵场到育肥场的扩散模式和幼虫的存活率受到水动力过程的驱动,并受(生)物环境因素的影响。因此,了解温度升高、风速和风向变化对幼虫漂流和存活的影响非常重要。我们应用了一种粒子追踪模型,该模型与英吉利海峡和北海的三维水动力模型相结合,用于研究被开发的比目鱼(普通)鲽(Solea solea)的扩散动态。我们首先评估了模型的稳健性以及 1995-2011 年期间幼虫运输的年际变化。然后,我们使用一组有代表性的年份(2003-2011 年),研究了气候变化对育肥场幼虫扩散、连接模式和补充的影响。讨论了受政府间气候变化专门委员会 2040 年预测启发的五个情景的影响,并将其与年际变化进行了比较。结果表明,在区域尺度上,每年 33%的补充量变化可以得到解释,并且 9 年的时间足以捕捉扩散动态的年际变化。在涉及温度升高、早期产卵和风向变化的情景中,模型预测,(i)由于早期孵化的幼虫经历的温度降低(-9%),扩散距离(增加 70%)和浮游幼体持续时间(增加 22%)将增加,(ii)育肥场的幼虫补充在一些地区(36%)将增加,而在其他地区(-58%)将减少,(iii)连接性将在不同地区表现出相反的变化。在区域尺度上,我们的模型预测,由于全球变化,幼虫补充(增加 9%)和连接性(保留减少 4%,播种增加 37%)将发生相当大的变化。所有这些因素都会影响鲽鱼的分布和生产力,从而影响底层生态系统的功能和渔业管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验