Mediterranean Institute of Oceanography (UM 110, UMR 7294), CNRS, Aix Marseille Univ., Univ. Toulon, IRD, 13288, Marseille, France.
Stazione zoologica Anton Dohrn, Dipartimento Ecologia Marina Integrata, Sede Interdipartimentale della Sicilia, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142 Palermo, Italy; Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Parc Valrose 28, Avenue Valrose, 06108, Nice, France.
Mar Environ Res. 2019 Oct;151:104761. doi: 10.1016/j.marenvres.2019.104761. Epub 2019 Jul 19.
Assessing larval dispersal is essential to understand the structure and dynamics of marine populations. However, knowledge about early-life dispersal is sparse, and so is our understanding of the spawning process, perhaps the most obscure component of biphasic life cycles. Indeed, poorly known species-specific spawning modality and species-specific early-life traits, as well as the high spatio-temporal variability of the oceanic circulation experienced during larval drift, hamper our ability to appraise the realized connectivity of coastal fishes. Here, we propose an analytical framework which combines Lagrangian modelling, network theory, otolith analyses and biogeographical information to pinpoint and characterize larval sources which are then grouped into discrete spawning areas. Such well-delineated larval sources allow improving the quantitative evaluations of both dispersal scales and connectivity patterns. To illustrate its added value, our approach is applied to two case-studies focusing on Diplodus sargus and Diplodus vulgaris in the Adriatic sea. We evidence robust correlations between otolith geochemistry and modelled spawning areas to assess their relative importance for the larval replenishment of the Apulian coast. Our results show that, contrary to D. sargus, D. vulgaris larvae originate from both eastern and western Adriatic shorelines. Our findings also suggest that dispersal distances and dispersal surfaces scale differently with the pelagic larval duration. Furthermore, 30.8% of D. sargus larvae and 23.6% of D. vulgaris larvae of the Apulian populations originate from Marine protected area (MPA), exemplifying larval export from MPAs to surrounding unprotected areas. This flexible multidisciplinary framework, which can be adjusted to any coastal fish and oceanic system, exploits the explanatory power of a dispersal model, fine-tuned and backed-up by observations, to provide more reliable scientific basis for the management and conservation of marine ecosystems.
评估幼虫扩散对于理解海洋种群的结构和动态至关重要。然而,我们对早期生活扩散的了解甚少,对产卵过程的了解也很少,而产卵过程可能是双相生活史中最模糊的组成部分。事实上,物种特异性的产卵模式和特定于物种的早期生活特征以及幼虫漂移期间经历的海洋环流的高度时空变异性,阻碍了我们评估沿海鱼类实际连通性的能力。在这里,我们提出了一个分析框架,该框架结合了拉格朗日模型、网络理论、耳石分析和生物地理信息,以确定和描述幼虫来源,然后将其分组为离散的产卵区。这些定义明确的幼虫来源有助于提高对扩散规模和连通模式的定量评估。为了说明其附加值,我们的方法应用于两个案例研究,重点是亚得里亚海的鲷鱼和黄鳍鲷。我们通过耳石化学与模型化产卵区之间的强相关性来评估它们对普利亚海岸幼鱼补充的相对重要性。我们的研究结果表明,与 D. sargus 相反,D. vulgaris 的幼虫源自亚得里亚海的东部和西部海岸线。我们的研究结果还表明,扩散距离和扩散表面随浮游幼体持续时间而不同。此外,30.8%的亚得里亚海鲷鱼和 23.6%的普利亚种群黄鳍鲷的幼虫来自海洋保护区(MPA),这说明了从 MPA 向周围无保护区域输出幼虫。这种灵活的多学科框架可以适应任何沿海鱼类和海洋系统,利用扩散模型的解释力,经过微调并得到观察结果的支持,为海洋生态系统的管理和保护提供更可靠的科学依据。