Suppr超能文献

通过纳米沉淀法调控制备的聚(丙交酯-共-乙交酯)(PLGA)纳米粒的粒径。

Tuning the Size of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles Fabricated by Nanoprecipitation.

机构信息

Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA.

出版信息

Biotechnol J. 2018 Jan;13(1). doi: 10.1002/biot.201700203. Epub 2017 Oct 13.

Abstract

Polymeric nanoparticles (PNPs) are promising drug carriers in cancer treatment. Size of the particles has a significant impact on drug loading, in vivo distribution, extravasation, intratumor diffusion and cell uptake, and thus is critical for the successful development of a drug delivery regime. However, methods for manufacturing PNPs of defined size are yet to be established. The goal of this study is to establish a method that can be used to fabricate PNPs with controlled size. The factors that could impact the size of PNPs fabricated by nano-precipitation are systematically investigated. The factors studied include polymer concentration, organic solvent, temperature, aqueous phase ionic strength, organic phase injection rate, aqueous phase agitation rate, gauge of the needles, and final polymer concentration. Polymer concentration, the choice of organic solvent, temperature, and the ionic strength of the aqueous phase are shown to have a significant impact on the size of PNPs, and the effect of these factors can be attributed to a single parameter, the diffusion coefficient of the solvent in water, D . It is possible that by tightly control these four parameters, nanoparticles with highly predictable and desirable size with narrow size distribution can be fabricated.

摘要

聚合物纳米粒子(PNPs)是癌症治疗中很有前途的药物载体。颗粒的大小对药物负载、体内分布、渗出、肿瘤内扩散和细胞摄取有重大影响,因此对成功开发药物输送方案至关重要。然而,用于制造具有确定尺寸的 PNPs 的方法尚未建立。本研究的目的是建立一种可用于制造具有可控尺寸的 PNPs 的方法。系统研究了影响纳米沉淀法制备的 PNPs 尺寸的因素。研究的因素包括聚合物浓度、有机溶剂、温度、水相离子强度、有机相注入率、水相搅拌速度、针的规格和最终聚合物浓度。聚合物浓度、有机溶剂的选择、温度和水相的离子强度对 PNPs 的尺寸有显著影响,这些因素的影响可以归因于一个单一的参数,即溶剂在水中的扩散系数,D。通过严格控制这四个参数,有可能制造出具有高度可预测和理想尺寸且尺寸分布较窄的纳米粒子。

相似文献

1
Tuning the Size of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles Fabricated by Nanoprecipitation.
Biotechnol J. 2018 Jan;13(1). doi: 10.1002/biot.201700203. Epub 2017 Oct 13.
3
Optimized formulation of high-payload PLGA nanoparticles containing insulin-lauryl sulfate complex.
Drug Dev Ind Pharm. 2009 Feb;35(2):177-84. doi: 10.1080/03639040802235894.
4
Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content.
Int J Pharm. 2007 May 24;336(2):367-75. doi: 10.1016/j.ijpharm.2006.11.061. Epub 2006 Dec 5.
5
Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
Drug Dev Ind Pharm. 2009 Nov;35(11):1375-83. doi: 10.3109/03639040902939221.
9
A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems.
Pharm Nanotechnol. 2021;9(1):36-50. doi: 10.2174/2211738508666201214103010.

引用本文的文献

1
Nanomaterials targeting cancer stem cells to overcome drug resistance and tumor recurrence.
Front Oncol. 2025 Jun 6;15:1499283. doi: 10.3389/fonc.2025.1499283. eCollection 2025.
3
Delafloxacin-Loaded Poly(d,l-lactide--glycolide) Nanoparticles for Topical Ocular Use: Characterization and Antimicrobial Activity.
ACS Omega. 2024 Dec 12;9(51):50476-50490. doi: 10.1021/acsomega.4c07805. eCollection 2024 Dec 24.
4
A Versatile, Low-Cost Modular Microfluidic System to Prepare Poly(Lactic-co-Glycolic Acid) Nanoparticles With Encapsulated Protein.
Pharm Res. 2024 Dec;41(12):2347-2361. doi: 10.1007/s11095-024-03792-1. Epub 2024 Nov 27.
5
Baculovirus Expressing Tumor Growth Factor-β1 (TGFβ1) Nanoshuttle Augments Therapeutic Effects for Vascular Wound Healing: Design and In Vitro Analysis.
ACS Pharmacol Transl Sci. 2024 Oct 25;7(11):3419-3428. doi: 10.1021/acsptsci.4c00509. eCollection 2024 Nov 8.
8
Using a systematic and quantitative approach to generate new insights into drug loading of PLGA nanoparticles using nanoprecipitation.
Nanoscale Adv. 2024 May 8;6(12):3188-3198. doi: 10.1039/d4na00087k. eCollection 2024 Jun 11.
10
Harnessing the Potential of PLGA Nanoparticles for Enhanced Bone Regeneration.
Pharmaceutics. 2024 Feb 15;16(2):273. doi: 10.3390/pharmaceutics16020273.

本文引用的文献

1
Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.
Biotechnol J. 2017 Jan;12(1). doi: 10.1002/biot.201600408. Epub 2016 Dec 14.
2
Beads, beaded-fibres and fibres: Tailoring the morphology of poly(caprolactone) using pressurised gyration.
Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1373-82. doi: 10.1016/j.msec.2016.07.071. Epub 2016 Jul 28.
3
Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery.
Nanomedicine. 2016 Oct;12(7):1919-1929. doi: 10.1016/j.nano.2016.05.005. Epub 2016 May 13.
4
Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution.
Mater Sci Eng C Mater Biol Appl. 2016 Aug 1;65:240-50. doi: 10.1016/j.msec.2016.03.076. Epub 2016 Mar 24.
5
Microfluidic preparation of polymer nanospheres.
J Nanopart Res. 2014;16(12):2626. doi: 10.1007/s11051-014-2626-5. Epub 2014 Dec 4.
7
Advances in Integrative Nanomedicine for Improving Infectious Disease Treatment in Public Health.
Eur J Integr Med. 2013 Apr 1;5(2):126-140. doi: 10.1016/j.eujim.2012.11.002.
8
In vitro and in vivo evaluation of riccardin D nanosuspensions with different particle size.
Colloids Surf B Biointerfaces. 2013 Feb 1;102:620-6. doi: 10.1016/j.colsurfb.2012.09.006. Epub 2012 Sep 11.
10
"Targeting" nanoparticles: the constraints of physical laws and physical barriers.
J Control Release. 2012 Dec 10;164(2):115-24. doi: 10.1016/j.jconrel.2012.03.022. Epub 2012 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验