基于 PET/CT 影像组学特征预测行手术治疗的非小细胞肺癌患者的无病生存。
Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery.
机构信息
Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.
Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
出版信息
Eur J Nucl Med Mol Imaging. 2018 Feb;45(2):207-217. doi: 10.1007/s00259-017-3837-7. Epub 2017 Sep 24.
PURPOSE
Radiomic features derived from the texture analysis of different imaging modalities e show promise in lesion characterisation, response prediction, and prognostication in lung cancer patients. The present study aimed to identify an images-based radiomic signature capable of predicting disease-free survival (DFS) in non-small cell lung cancer (NSCLC) patients undergoing surgery.
METHODS
A cohort of 295 patients was selected. Clinical parameters (age, sex, histological type, tumour grade, and stage) were recorded for all patients. The endpoint of this study was DFS. Both computed tomography (CT) and fluorodeoxyglucose positron emission tomography (PET) images generated from the PET/CT scanner were analysed. Textural features were calculated using the LifeX package. Statistical analysis was performed using the R platform. The datasets were separated into two cohorts by random selection to perform training and validation of the statistical models. Predictors were fed into a multivariate Cox proportional hazard regression model and the receiver operating characteristic (ROC) curve as well as the corresponding area under the curve (AUC) were computed for each model built.
RESULTS
The Cox models that included radiomic features for the CT, the PET, and the PET+CT images resulted in an AUC of 0.75 (95%CI: 0.65-0.85), 0.68 (95%CI: 0.57-0.80), and 0.68 (95%CI: 0.58-0.74), respectively. The addition of clinical predictors to the Cox models resulted in an AUC of 0.61 (95%CI: 0.51-0.69), 0.64 (95%CI: 0.53-0.75), and 0.65 (95%CI: 0.50-0.72) for the CT, the PET, and the PET+CT images, respectively.
CONCLUSIONS
A radiomic signature, for either CT, PET, or PET/CT images, has been identified and validated for the prediction of disease-free survival in patients with non-small cell lung cancer treated by surgery.
目的
从不同成像模式的纹理分析中提取的放射组学特征在肺癌患者的病灶特征、反应预测和预后方面显示出很大的潜力。本研究旨在确定一种基于图像的放射组学特征,能够预测接受手术治疗的非小细胞肺癌(NSCLC)患者的无病生存期(DFS)。
方法
选择了 295 名患者的队列。记录了所有患者的临床参数(年龄、性别、组织学类型、肿瘤分级和分期)。本研究的终点是 DFS。从 PET/CT 扫描仪生成的 CT 和氟脱氧葡萄糖正电子发射断层扫描(PET)图像均进行了分析。使用 LifeX 包计算纹理特征。使用 R 平台进行统计分析。通过随机选择将数据集分为两个队列,用于统计模型的训练和验证。将预测因子输入多变量 Cox 比例风险回归模型,并计算每个构建模型的接收者操作特征(ROC)曲线及其相应的曲线下面积(AUC)。
结果
纳入 CT、PET 和 PET+CT 图像的放射组学特征的 Cox 模型得出的 AUC 分别为 0.75(95%CI:0.65-0.85)、0.68(95%CI:0.57-0.80)和 0.68(95%CI:0.58-0.74)。将临床预测因子添加到 Cox 模型中,得出的 AUC 分别为 CT、PET 和 PET+CT 图像的 0.61(95%CI:0.51-0.69)、0.64(95%CI:0.53-0.75)和 0.65(95%CI:0.50-0.72)。
结论
已经确定并验证了一种基于 CT、PET 或 PET/CT 图像的放射组学特征,可用于预测接受手术治疗的非小细胞肺癌患者的无病生存期。