Department of Advanced Biomedical Imaging, University of Yamanashi, Chuo, Yamanashi, Japan.
Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan.
J Appl Clin Med Phys. 2024 Jul;25(7):e14322. doi: 10.1002/acm2.14322. Epub 2024 Mar 4.
PURPOSE: Predicting recurrence following stereotactic body radiotherapy (SBRT) for non-small cell lung cancer provides important information for the feasibility of the individualized radiotherapy and allows to select the appropriate treatment strategy based on the risk of recurrence. In this study, we evaluated the performance of both machine learning models using positron emission tomography (PET) and computed tomography (CT) radiomic features for predicting recurrence after SBRT. METHODS: Planning CT and PET images of 82 non-small cell lung cancer patients who performed SBRT at our hospital were used. First, tumors were delineated on each CT and PET of each patient, and 111 unique radiomic features were extracted, respectively. Next, the 10 features were selected using three different feature selection algorithms, respectively. Recurrence prediction models based on the selected features and four different machine learning algorithms were developed, respectively. Finally, we compared the predictive performance of each model for each recurrence pattern using the mean area under the curve (AUC) calculated following the 0.632+ bootstrap method. RESULTS: The highest performance for local recurrence, regional lymph node metastasis, and distant metastasis were observed in models using Support vector machine with PET features (mean AUC = 0.646), Naive Bayes with PET features (mean AUC = 0.611), and Support vector machine with CT features (mean AUC = 0.645), respectively. CONCLUSIONS: We comprehensively evaluated the performance of prediction model developed for recurrence following SBRT. The model in this study would provide information to predict the recurrence pattern and assist in making treatment strategies.
目的:预测立体定向体放射治疗(SBRT)治疗非小细胞肺癌后的复发情况,可为个体化放疗的可行性提供重要信息,并根据复发风险选择合适的治疗策略。本研究评估了使用正电子发射断层扫描(PET)和计算机断层扫描(CT)放射组学特征的机器学习模型在预测 SBRT 后复发方面的性能。
方法:使用我院 82 例接受 SBRT 的非小细胞肺癌患者的计划 CT 和 PET 图像。首先,在每位患者的每幅 CT 和 PET 上勾画肿瘤,并分别提取 111 个独特的放射组学特征。然后,分别使用三种不同的特征选择算法选择 10 个特征。分别基于所选特征和四种不同的机器学习算法开发基于复发预测的模型。最后,使用 0.632+bootstrap 方法计算的平均曲线下面积(AUC),比较每种模型对每种复发模式的预测性能。
结果:使用基于 PET 特征的支持向量机(平均 AUC=0.646)、基于 PET 特征的朴素贝叶斯(平均 AUC=0.611)和基于 CT 特征的支持向量机(平均 AUC=0.645)模型,局部复发、区域淋巴结转移和远处转移的性能最高。
结论:我们全面评估了预测 SBRT 后复发的模型的性能。本研究中的模型将提供预测复发模式的信息,并有助于制定治疗策略。
EJNMMI Phys. 2024-10-3
Eur J Nucl Med Mol Imaging. 2023-2
Transl Lung Cancer Res. 2021-2