文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 PET 和 CT 放射组学评估两种机器学习模型在预测肺癌立体定向体部放疗后复发中的性能:单中心研究。

Evaluation of the performance of both machine learning models using PET and CT radiomics for predicting recurrence following lung stereotactic body radiation therapy: A single-institutional study.

机构信息

Department of Advanced Biomedical Imaging, University of Yamanashi, Chuo, Yamanashi, Japan.

Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan.

出版信息

J Appl Clin Med Phys. 2024 Jul;25(7):e14322. doi: 10.1002/acm2.14322. Epub 2024 Mar 4.


DOI:10.1002/acm2.14322
PMID:38436611
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11244675/
Abstract

PURPOSE: Predicting recurrence following stereotactic body radiotherapy (SBRT) for non-small cell lung cancer provides important information for the feasibility of the individualized radiotherapy and allows to select the appropriate treatment strategy based on the risk of recurrence. In this study, we evaluated the performance of both machine learning models using positron emission tomography (PET) and computed tomography (CT) radiomic features for predicting recurrence after SBRT. METHODS: Planning CT and PET images of 82 non-small cell lung cancer patients who performed SBRT at our hospital were used. First, tumors were delineated on each CT and PET of each patient, and 111 unique radiomic features were extracted, respectively. Next, the 10 features were selected using three different feature selection algorithms, respectively. Recurrence prediction models based on the selected features and four different machine learning algorithms were developed, respectively. Finally, we compared the predictive performance of each model for each recurrence pattern using the mean area under the curve (AUC) calculated following the 0.632+ bootstrap method. RESULTS: The highest performance for local recurrence, regional lymph node metastasis, and distant metastasis were observed in models using Support vector machine with PET features (mean AUC = 0.646), Naive Bayes with PET features (mean AUC = 0.611), and Support vector machine with CT features (mean AUC = 0.645), respectively. CONCLUSIONS: We comprehensively evaluated the performance of prediction model developed for recurrence following SBRT. The model in this study would provide information to predict the recurrence pattern and assist in making treatment strategies.

摘要

目的:预测立体定向体放射治疗(SBRT)治疗非小细胞肺癌后的复发情况,可为个体化放疗的可行性提供重要信息,并根据复发风险选择合适的治疗策略。本研究评估了使用正电子发射断层扫描(PET)和计算机断层扫描(CT)放射组学特征的机器学习模型在预测 SBRT 后复发方面的性能。

方法:使用我院 82 例接受 SBRT 的非小细胞肺癌患者的计划 CT 和 PET 图像。首先,在每位患者的每幅 CT 和 PET 上勾画肿瘤,并分别提取 111 个独特的放射组学特征。然后,分别使用三种不同的特征选择算法选择 10 个特征。分别基于所选特征和四种不同的机器学习算法开发基于复发预测的模型。最后,使用 0.632+bootstrap 方法计算的平均曲线下面积(AUC),比较每种模型对每种复发模式的预测性能。

结果:使用基于 PET 特征的支持向量机(平均 AUC=0.646)、基于 PET 特征的朴素贝叶斯(平均 AUC=0.611)和基于 CT 特征的支持向量机(平均 AUC=0.645)模型,局部复发、区域淋巴结转移和远处转移的性能最高。

结论:我们全面评估了预测 SBRT 后复发的模型的性能。本研究中的模型将提供预测复发模式的信息,并有助于制定治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda2/11244675/0e3ad3949af3/ACM2-25-e14322-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda2/11244675/ee15cd366153/ACM2-25-e14322-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda2/11244675/4e2a8617eb7e/ACM2-25-e14322-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda2/11244675/0e3ad3949af3/ACM2-25-e14322-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda2/11244675/ee15cd366153/ACM2-25-e14322-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda2/11244675/4e2a8617eb7e/ACM2-25-e14322-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda2/11244675/0e3ad3949af3/ACM2-25-e14322-g003.jpg

相似文献

[1]
Evaluation of the performance of both machine learning models using PET and CT radiomics for predicting recurrence following lung stereotactic body radiation therapy: A single-institutional study.

J Appl Clin Med Phys. 2024-7

[2]
Prospective external validation of radiomics-based predictive model of distant metastasis after dynamic tumor tracking stereotactic body radiation therapy in patients with non-small-cell lung cancer: A multi-institutional analysis.

J Appl Clin Med Phys. 2024-10

[3]
Pretreatment F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated with Stereotactic Body Radiotherapy for Early-Stage Non-Small Cell Lung Cancer: A Multicentric Study.

J Nucl Med. 2019-11-15

[4]
A PET/CT radiomics model for predicting distant metastasis in early-stage non-small cell lung cancer patients treated with stereotactic body radiotherapy: a multicentric study.

Radiat Oncol. 2024-1-22

[5]
Multicentric development and evaluation of [F]FDG PET/CT and CT radiomic models to predict regional and/or distant recurrence in early-stage non-small cell lung cancer treated by stereotactic body radiation therapy.

Eur J Nucl Med Mol Imaging. 2024-3

[6]
Application of 18 F-fluorodeoxyglucose PET/CT radiomic features and machine learning to predict early recurrence of non-small cell lung cancer after curative-intent therapy.

Nucl Med Commun. 2023-2-1

[7]
CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy.

Radiat Oncol. 2017-9-25

[8]
An [F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer.

Eur Radiol. 2024-1

[9]
Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy.

Med Phys. 2021-10

[10]
Predicting Regional Recurrence and Prognosis in Stereotactic Body Radiation Therapy-Treated Clinical Stage I Non-small Cell Lung Cancer Using a Radiomics Model Constructed With Surgical Data.

Int J Radiat Oncol Biol Phys. 2024-11-15

引用本文的文献

[1]
Radiomics-based classification of medication-related osteonecrosis of the jaw using panoramic radiographs.

Oral Radiol. 2025-5-5

[2]
PET radiomics in lung cancer: advances and translational challenges.

EJNMMI Phys. 2024-10-3

本文引用的文献

[1]
Multicentric development and evaluation of [F]FDG PET/CT and CT radiomic models to predict regional and/or distant recurrence in early-stage non-small cell lung cancer treated by stereotactic body radiation therapy.

Eur J Nucl Med Mol Imaging. 2024-3

[2]
Development of a prediction model for head and neck volume reduction by clinical factors, dose-volume histogram parameters and radiomics in head and neck cancer†.

J Radiat Res. 2023-9-22

[3]
Predicting pathological highly invasive lung cancer from preoperative [F]FDG PET/CT with multiple machine learning models.

Eur J Nucl Med Mol Imaging. 2023-2

[4]
A deep learning-based radiomics approach to predict head and neck tumor regression for adaptive radiotherapy.

Sci Rep. 2022-5-27

[5]
Impact of Interobserver Variability in Manual Segmentation of Non-Small Cell Lung Cancer (NSCLC) Applying Low-Rank Radiomic Representation on Computed Tomography.

Cancers (Basel). 2021-11-28

[6]
Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples.

Phys Med. 2021-10

[7]
Imaging Biomarkers to Predict and Evaluate the Effectiveness of Immunotherapy in Advanced Non-Small-Cell Lung Cancer.

Front Oncol. 2021-3-19

[8]
Radiomics and artificial intelligence in lung cancer screening.

Transl Lung Cancer Res. 2021-2

[9]
Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images.

Ann Nucl Med. 2021-4

[10]
Application and limitation of radiomics approach to prognostic prediction for lung stereotactic body radiotherapy using breath-hold CT images with random survival forest: A multi-institutional study.

Med Phys. 2020-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索