立体定向体部放疗后非小细胞肺癌患者复发的 CT 影像学特征。

CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy.

机构信息

Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, China.

Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.

出版信息

Radiat Oncol. 2017 Sep 25;12(1):158. doi: 10.1186/s13014-017-0892-y.

Abstract

BACKGROUND

Predicting recurrence after stereotactic body radiotherapy (SBRT) in non-small cell lung cancer (NSCLC) patients is problematic, but critical for the decision of following treatment. This study aims to investigate the association of imaging features derived from the first follow-up computed tomography (CT) on lung cancer patient outcomes following SBRT, and identify patients at high risk of recurrence.

METHODS

Fifty nine biopsy-proven non-small cell lung cancer patients were qualified for this study. The first follow-up CTs were performed about 3 months after SBRT (median time: 91 days). Imaging features included 34 manually scored radiological features (semantics) describing the lesion, lung and thorax and 219 quantitative imaging features (radiomics) extracted automatically after delineation of the lesion. Cox proportional hazard models and Harrel's C-index were used to explore predictors of overall survival (OS), recurrence-free survival (RFS), and loco-regional recurrence-free survival (LR-RFS). Five-fold cross validation was performed on the final prognostic model.

RESULTS

The median follow-up time was 42 months. The model for OS contained Eastern Cooperative Oncology Group (ECOG) performance status (HR = 3.13, 95% CI: 1.17-8.41), vascular involvement (HR = 3.21, 95% CI: 1.29-8.03), lymphadenopathy (HR = 3.59, 95% CI: 1.58-8.16) and the 1st principle component of radiomic features (HR = 1.24, 95% CI: 1.02-1.51). The model for RFS contained vascular involvement (HR = 3.06, 95% CI: 1.40-6.70), vessel attachment (HR = 3.46, 95% CI: 1.65-7.25), pleural retraction (HR = 3.24, 95% CI: 1.41-7.42), lymphadenopathy (HR = 6.41, 95% CI: 2.58-15.90) and relative enhancement (HR = 1.40, 95% CI: 1.00-1.96). The model for LR-RFS contained vascular involvement (HR = 4.96, 95% CI: 2.23-11.03), lymphadenopathy (HR = 2.64, 95% CI: 1.19-5.82), circularity (F13, HR = 1.60, 95% CI: 1.10-2.32) and 3D Laws feature (F92, HR = 1.96, 95% CI: 1.35-2.83). Five-fold cross-validated the areas under the receiver operating characteristic curves (AUC) of these three models were all above 0.8.

CONCLUSIONS

Our analysis reveals disease progression could be prognosticated as early as 3 months after SBRT using CT imaging features, and these features would be helpful in clinical decision-making.

摘要

背景

预测立体定向体放射治疗(SBRT)后非小细胞肺癌(NSCLC)患者的复发是一个问题,但对后续治疗的决策至关重要。本研究旨在探讨首次随访 CT 上的影像学特征与 SBRT 后肺癌患者生存结果的关系,并确定复发风险较高的患者。

方法

59 名经活检证实的非小细胞肺癌患者符合本研究标准。第一次随访 CT 在 SBRT 后约 3 个月进行(中位时间:91 天)。影像学特征包括 34 项手动评分的放射学特征(语义)描述病变、肺和胸部,以及 219 项自动提取的定量影像学特征(放射组学)。Cox 比例风险模型和 Harrel's C 指数用于探索总生存(OS)、无复发生存(RFS)和局部区域无复发生存(LR-RFS)的预测因素。最终的预后模型进行了五重交叉验证。

结果

中位随访时间为 42 个月。OS 模型包含东部合作肿瘤学组(ECOG)表现状态(HR=3.13,95%CI:1.17-8.41)、血管受累(HR=3.21,95%CI:1.29-8.03)、淋巴结病(HR=3.59,95%CI:1.58-8.16)和放射组学特征的第一主成分(HR=1.24,95%CI:1.02-1.51)。RFS 模型包含血管受累(HR=3.06,95%CI:1.40-6.70)、血管附着(HR=3.46,95%CI:1.65-7.25)、胸膜回缩(HR=3.24,95%CI:1.41-7.42)、淋巴结病(HR=6.41,95%CI:2.58-15.90)和相对增强(HR=1.40,95%CI:1.00-1.96)。LR-RFS 模型包含血管受累(HR=4.96,95%CI:2.23-11.03)、淋巴结病(HR=2.64,95%CI:1.19-5.82)、圆形度(F13,HR=1.60,95%CI:1.10-2.32)和 3D Laws 特征(F92,HR=1.96,95%CI:1.35-2.83)。这些三个模型的五重交叉验证的接收者操作特征曲线(ROC)下面积(AUC)均大于 0.8。

结论

我们的分析表明,在 SBRT 后 3 个月即可使用 CT 影像学特征预测疾病进展,并有助于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f350/5613447/5d748a4cb763/13014_2017_892_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索