Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
Physics Department E22, Technical University of Munich, Garching, Germany.
Nat Methods. 2017 Nov;14(11):1090-1096. doi: 10.1038/nmeth.4431. Epub 2017 Sep 18.
Förster resonance energy transfer (FRET)-based tension sensor modules (TSMs) are available for investigating how distinct proteins bear mechanical forces in cells. Yet, forces in the single piconewton (pN) regime remain difficult to resolve, and tools for multiplexed tension sensing are lacking. Here, we report the generation and calibration of a genetically encoded, FRET-based biosensor called FL-TSM, which is characterized by a near-digital force response and increased sensitivity at 3-5 pN. In addition, we present a method allowing the simultaneous evaluation of coexpressed tension sensor constructs using two-color fluorescence lifetime microscopy. Finally, we introduce a procedure to calculate the fraction of mechanically engaged molecules within cells. Application of these techniques to new talin biosensors reveals an intramolecular tension gradient across talin-1 that is established upon integrin-mediated cell adhesion. The tension gradient is actomyosin- and vinculin-dependent and sensitive to the rigidity of the extracellular environment.
基于Förster 共振能量转移(FRET)的张力传感器模块(TSMs)可用于研究不同蛋白质如何在细胞中承受机械力。然而,在单个皮牛顿(pN)范围内的力仍然难以解析,并且缺乏用于多重张力感应的工具。在这里,我们报告了一种称为 FL-TSM 的基于基因编码的 FRET 生物传感器的产生和校准,该传感器具有近数字力响应和在 3-5 pN 时增加的灵敏度。此外,我们提出了一种允许使用双色荧光寿命显微镜同时评估共表达张力传感器构建体的方法。最后,我们介绍了一种计算细胞内机械结合分子分数的方法。将这些技术应用于新的 talin 生物传感器揭示了整合素介导的细胞黏附后 talin-1 内的分子内张力梯度。张力梯度依赖于肌动球蛋白和 vinculin,并且对细胞外环境的刚性敏感。