Kutsanedzie Felix Y H, Chen Quansheng, Hassan Md Mehedi, Yang Mingxiu, Sun Hao, Rahman Md Hafizur
School of Food & Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China.
School of Food & Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China.
Food Chem. 2018 Feb 1;240:231-238. doi: 10.1016/j.foodchem.2017.07.117. Epub 2017 Jul 25.
Total fungi count (TFC) is a quality indicator of cocoa beans when unmonitored leads to quality and safety problems. Fourier transform near infrared spectroscopy (FT-NIRS) combined with chemometric algorithms like partial least square (PLS); synergy interval-PLS (Si-PLS); synergy interval-genetic algorithm-PLS (Si-GAPLS); Ant colony optimization - PLS (ACO-PLS) and competitive-adaptive reweighted sampling-PLS (CARS-PLS) was employed to predict TFC in cocoa beans neat solution. Model results were evaluated using the correlation coefficients of the prediction (Rp) and calibration (Rc); root mean square error of prediction (RMSEP), and the ratio of sample standard deviation to RMSEP (RPD). The developed models performance yielded 0.951≤Rp≤0.975; and 3.15≤RPD≤4.32. The models' prediction stability improved in the order of PLS<CARS-PLS<ACO-PLS<Si-PLS<Si-GAPLS. FT-NIRS combined with Si-GAPLS may be employed for in-situ and noninvasive quantification of TFC in cocoa beans for quality and safety monitoring.
总真菌计数(TFC)是可可豆的一项质量指标,若不加以监测会导致质量和安全问题。采用傅里叶变换近红外光谱(FT-NIRS)结合偏最小二乘法(PLS)、协同区间偏最小二乘法(Si-PLS)、协同区间遗传算法偏最小二乘法(Si-GAPLS)、蚁群优化偏最小二乘法(ACO-PLS)和竞争性自适应重加权采样偏最小二乘法(CARS-PLS)等化学计量算法,对可可豆纯溶液中的TFC进行预测。使用预测相关系数(Rp)和校准相关系数(Rc)、预测均方根误差(RMSEP)以及样本标准差与RMSEP的比值(RPD)对模型结果进行评估。所开发模型的性能为0.951≤Rp≤0.975,且3.15≤RPD≤4.32。模型预测稳定性按PLS<CARS-PLS<ACO-PLS<Si-PLS<Si-GAPLS的顺序提高。FT-NIRS结合Si-GAPLS可用于可可豆中TFC的原位和非侵入式定量分析,以进行质量和安全监测。