Suppr超能文献

预测帕金森病的多领域进展:贝叶斯多变量广义线性混合效应模型。

Predicting the multi-domain progression of Parkinson's disease: a Bayesian multivariate generalized linear mixed-effect model.

机构信息

Departments of Public Health Sciences, Pennsylvania State University Hershey Medical Center, Hershey, PA, 17033, USA.

Department of Neurology, Pennsylvania State University Hershey Medical Center, Hershey, PA, 17033, USA.

出版信息

BMC Med Res Methodol. 2017 Sep 25;17(1):147. doi: 10.1186/s12874-017-0415-4.

Abstract

BACKGROUND

It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data.

METHODS

Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve.

RESULTS

First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals.

CONCLUSIONS

Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD.

TRIAL REGISTRATION

The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).

摘要

背景

由于涉及多领域和纵向数据,当前的统计模型难以预测帕金森病(PD)的临床进展。

方法

过去的横断面研究中单变量纵向或多变量分析的能力有限,无法预测个体结局或单一时刻。提出了贝叶斯框架下的多变量广义线性混合效应模型(GLMM),以研究基线、18 个月和 36 个月获得的多领域纵向结局。结局包括 MDS-UPDRS 的运动、非运动和姿势不稳评分,以及作为协变量的人口统计学和标准化临床数据。使用参数估计和随机效应的后验分布中的样本对内外部受试者进行动态预测,并根据均方根误差(RMSE)、绝对偏差(AB)和接收者操作特征(ROC)曲线下面积评估预测准确性。

结果

首先,我们的预测模型确定了与运动、非运动和姿势稳定性评分差异相关的临床数据。其次,评估了我们模型对训练数据的预测准确性,特别是在非运动方面,预测准确性得到了提高(RMSE 和 AB:2.89 和 2.20),而与单变量分析相比(RMSE 和 AB:3.04 和 2.35)。第三,对测试数据的纵向轨迹进行了个体水平的预测,约 80%的观察值落在 95%可信区间内。

结论

多变量广义混合模型有望预测 PD 个体结局的临床进展。

试验注册

数据来自 Xuemei Huang 博士的 NIH 资助 R01 NS060722,是 NINDS PD 生物标志物计划(PDBP)的一部分。所有数据在收集后 24 小时内输入到数据管理存储库(DMR),该存储库是公开可用的(https://pdbp.ninds.nih.gov/data-management)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a173/5613469/c9a0b7b35829/12874_2017_415_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验