Guangyi Mei, Yujun Sun, Hao Xu, de-Miguel Sergio
Laboratory for Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Road, Beijing, China.
Faculty of Science and Forestry, University of Eastern Finland, P.O., Joensuu, Finland; Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center (UdL-Agrotecnio), Av. Rovira Roure, 191, E-25198, Lleida, Spain.
PLoS One. 2015 Oct 7;10(10):e0140095. doi: 10.1371/journal.pone.0140095. eCollection 2015.
A systematic evaluation of nonlinear mixed-effect taper models for volume prediction was performed. Of 21 taper equations with fewer than 5 parameters each, the best 4-parameter fixed-effect model according to fitting statistics was then modified by comparing its values for the parameters total height (H), diameter at breast height (DBH), and aboveground height (h) to modeling data. Seven alternative prediction strategies were compared using the best new equation in the absence of calibration data, which is often unavailable in forestry practice. The results of this study suggest that because calibration may sometimes be a realistic option, though it is rarely used in practical applications, one of the best strategies for improving the accuracy of volume prediction is the strategy with 7 calculated total heights of 3, 6 and 9 trees in the largest, smallest and medium-size categories, respectively. We cannot use the average trees or dominant trees for calculating the random parameter for further predictions. The method described here will allow the user to make the best choices of taper type and the best random-effect calculated strategy for each practical application and situation at tree level.
对用于体积预测的非线性混合效应削度模型进行了系统评估。在每个模型参数少于5个的21个削度方程中,根据拟合统计量选出最佳的四参数固定效应模型,然后通过将其总高度(H)、胸径(DBH)和地上高度(h)参数值与建模数据进行比较,对该模型进行修正。在缺乏校准数据(林业实践中通常无法获取)的情况下,使用最佳新方程比较了七种替代预测策略。本研究结果表明,尽管校准在实际应用中很少使用,但有时它可能是一种现实的选择,提高体积预测准确性的最佳策略之一是分别计算最大、最小和中等大小类别中3棵、6棵和9棵树的7个总高度的策略。我们不能使用平均树或优势树来计算随机参数以进行进一步预测。这里描述的方法将允许用户针对树木水平的每个实际应用和情况,做出削度类型的最佳选择以及最佳随机效应计算策略。