Suppr超能文献

非小细胞肺癌的放射性肺毒性:了解临床因素和细胞因子与剂量-毒性关系的相互作用。

Radiation-induced lung toxicity in non-small-cell lung cancer: Understanding the interactions of clinical factors and cytokines with the dose-toxicity relationship.

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, USA.

Department of Biostatistics, University of Michigan, Ann Arbor, USA.

出版信息

Radiother Oncol. 2017 Oct;125(1):66-72. doi: 10.1016/j.radonc.2017.09.005. Epub 2017 Sep 23.

Abstract

BACKGROUND AND PURPOSE

Current methods to estimate risk of radiation-induced lung toxicity (RILT) rely on dosimetric parameters. We aimed to improve prognostication by incorporating clinical and cytokine data, and to investigate how these factors may interact with the effect of mean lung dose (MLD) on RILT.

MATERIALS AND METHODS

Data from 125 patients treated from 2004 to 2013 with definitive radiotherapy for stages I-III NSCLC on four prospective clinical trials were analyzed. Plasma levels of 30 cytokines were measured pretreatment, and at 2 and 4weeks midtreatment. Penalized logistic regression models based on combinations of MLD, clinical factors, and cytokine levels were developed. Cross-validated estimates of log-likelihood and area under the receiver operating characteristic curve (AUC) were used to assess accuracy.

RESULTS

In prognosticating grade 3 or greater RILT by MLD alone, cross-validated log-likelihood and AUC were -28.2 and 0.637, respectively. Incorporating clinical features and baseline cytokine levels increased log-likelihood to -27.6 and AUC to 0.669. Midtreatment cytokine data did not further increase log-likelihood or AUC. Of the 30 cytokines measured, higher levels of 13 decreased the effect of MLD on RILT, corresponding to a lower odds ratio for RILT per Gy MLD, while higher levels of 4 increased the association.

CONCLUSIONS

Although the added prognostic benefit from cytokine data in our model was modest, understanding how clinical and biologic factors interact with the MLD-RILT relationship represents a novel framework for understanding and investigating the multiple factors contributing to radiation-induced toxicity.

摘要

背景与目的

目前评估放射性肺毒性(RILT)风险的方法依赖于剂量学参数。我们旨在通过纳入临床和细胞因子数据来改善预后,并研究这些因素如何与平均肺剂量(MLD)对 RILT 的影响相互作用。

材料与方法

对 2004 年至 2013 年间在四项前瞻性临床试验中接受根治性放疗的 I-III 期 NSCLC 患者的 125 例数据进行了分析。在治疗前、治疗 2 周和 4 周时测量了患者血浆中 30 种细胞因子的水平。采用基于 MLD、临床因素和细胞因子水平组合的惩罚逻辑回归模型进行分析。交叉验证的对数似然和受试者工作特征曲线(ROC)下面积(AUC)用于评估准确性。

结果

仅用 MLD 预测 3 级或更高级别的 RILT,交叉验证的对数似然和 AUC 分别为-28.2 和 0.637。纳入临床特征和基线细胞因子水平后,对数似然增加至-27.6,AUC 增加至 0.669。治疗中期的细胞因子数据并未进一步增加对数似然或 AUC。在测量的 30 种细胞因子中,较高水平的 13 种降低了 MLD 对 RILT 的影响,相当于每 Gy MLD 发生 RILT 的几率降低,而较高水平的 4 种则增加了相关性。

结论

尽管我们模型中细胞因子数据提供的预后获益较小,但了解临床和生物学因素如何与 MLD-RILT 关系相互作用,代表了理解和研究导致放射性毒性的多种因素的新框架。

相似文献

2
Plasma Levels of IL-8 and TGF-β1 Predict Radiation-Induced Lung Toxicity in Non-Small Cell Lung Cancer: A Validation Study.
Int J Radiat Oncol Biol Phys. 2017 Jul 1;98(3):615-621. doi: 10.1016/j.ijrobp.2017.03.011. Epub 2017 Mar 14.
6
Simple Factors Associated With Radiation-Induced Lung Toxicity After Stereotactic Body Radiation Therapy of the Thorax: A Pooled Analysis of 88 Studies.
Int J Radiat Oncol Biol Phys. 2016 Aug 1;95(5):1357-1366. doi: 10.1016/j.ijrobp.2016.03.024. Epub 2016 Mar 25.

引用本文的文献

1
IDO1 Activity Predicts Lung Toxicity in Patients with Unresectable Stage III NSCLC and Chemoradiotherapy.
J Oncol. 2023 Feb 14;2023:3591758. doi: 10.1155/2023/3591758. eCollection 2023.
2
Direct incorporation of patient-specific efficacy and toxicity estimates in radiation therapy plan optimization.
Med Phys. 2022 Oct;49(10):6279-6292. doi: 10.1002/mp.15940. Epub 2022 Sep 2.
4
Promising Biomarkers of Radiation-Induced Lung Injury: A Review.
Biomedicines. 2021 Sep 8;9(9):1181. doi: 10.3390/biomedicines9091181.
8
Radiation Exposure-Induced Changes in the Immune Cells and Immune Factors of Mice With or Without Primary Lung Tumor.
Dose Response. 2020 May 19;18(2):1559325820926744. doi: 10.1177/1559325820926744. eCollection 2020 Apr-Jun.
9
Accounting for established predictors with the multistep elastic net.
Stat Med. 2019 Oct 15;38(23):4534-4544. doi: 10.1002/sim.8313. Epub 2019 Jul 17.
10
Cytokines and radiation-induced pulmonary injuries.
J Radiat Res. 2018 Nov 1;59(6):709-753. doi: 10.1093/jrr/rry067.

本文引用的文献

1
Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis.
Radiother Oncol. 2017 Apr;123(1):85-92. doi: 10.1016/j.radonc.2017.02.004. Epub 2017 Feb 22.
3
Nondosimetric risk factors for radiation-induced lung toxicity.
Semin Radiat Oncol. 2015 Apr;25(2):100-9. doi: 10.1016/j.semradonc.2014.12.003. Epub 2014 Dec 15.
4
Effect of normal lung definition on lung dosimetry and lung toxicity prediction in radiation therapy treatment planning.
Int J Radiat Oncol Biol Phys. 2013 Aug 1;86(5):956-63. doi: 10.1016/j.ijrobp.2013.05.003.
5
A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis.
Acta Oncol. 2012 Nov;51(8):975-83. doi: 10.3109/0284186X.2012.718093. Epub 2012 Sep 5.
7
Prediction of radiation pneumonitis in lung cancer patients: a systematic review.
J Cancer Res Clin Oncol. 2012 Dec;138(12):2103-16. doi: 10.1007/s00432-012-1284-1. Epub 2012 Jul 29.
8
Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis.
Int J Radiat Oncol Biol Phys. 2013 Feb 1;85(2):444-50. doi: 10.1016/j.ijrobp.2012.04.043. Epub 2012 Jun 9.
10
Radiation dose-volume effects in the lung.
Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S70-6. doi: 10.1016/j.ijrobp.2009.06.091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验