Luo Yi, El Naqa Issam, McShan Daniel L, Ray Dipankar, Lohse Ines, Matuszak Martha M, Owen Dawn, Jolly Shruti, Lawrence Theodore S, Kong Feng-Ming Spring, Ten Haken Randall K
Department of Radiation Oncology, The University of Michigan, Ann Arbor, United States.
Department of Radiation Oncology, Indiana University, Indianapolis, United States.
Radiother Oncol. 2017 Apr;123(1):85-92. doi: 10.1016/j.radonc.2017.02.004. Epub 2017 Feb 22.
In non-small-cell lung cancer radiotherapy, radiation pneumonitis≥grade 2 (RP2) depends on patients' dosimetric, clinical, biological and genomic characteristics.
We developed a Bayesian network (BN) approach to explore its potential for interpreting biophysical signaling pathways influencing RP2 from a heterogeneous dataset including single nucleotide polymorphisms, micro RNAs, cytokines, clinical data, and radiation treatment plans before and during the course of radiotherapy. Model building utilized 79 patients (21 with RP2) with complete data, and model testing used 50 additional patients with incomplete data. A developed large-scale Markov blanket approach selected relevant predictors. Resampling by k-fold cross-validation determined the optimal BN structure. Area under the receiver-operating characteristics curve (AUC) measured performance.
Pre- and during-treatment BNs identified biophysical signaling pathways from the patients' relevant variables to RP2 risk. Internal cross-validation for the pre-BN yielded an AUC=0.82 which improved to 0.87 by incorporating during treatment changes. In the testing dataset, the pre- and during AUCs were 0.78 and 0.82, respectively.
Our developed BN approach successfully handled a high number of heterogeneous variables in a small dataset, demonstrating potential for unraveling relevant biophysical features that could enhance prediction of RP2, although the current observations would require further independent validation.
在非小细胞肺癌放疗中,≥2级放射性肺炎(RP2)取决于患者的剂量学、临床、生物学和基因组特征。
我们开发了一种贝叶斯网络(BN)方法,以探索其从异质数据集中解释影响RP2的生物物理信号通路的潜力,该数据集包括单核苷酸多态性、微小RNA、细胞因子、临床数据以及放疗过程前后的放射治疗计划。模型构建使用了79例数据完整的患者(21例发生RP2),模型测试使用了另外50例数据不完整的患者。一种开发的大规模马尔可夫毯方法选择了相关预测因子。通过k折交叉验证进行重采样确定了最佳BN结构。用受试者操作特征曲线下面积(AUC)衡量性能。
治疗前和治疗期间的BN确定了从患者相关变量到RP2风险的生物物理信号通路。治疗前BN的内部交叉验证得出AUC = 0.82,通过纳入治疗期间的变化,该值提高到0.87。在测试数据集中,治疗前和治疗期间的AUC分别为0.78和0.82。
我们开发的BN方法成功处理了小数据集中大量的异质变量,显示出揭示可能增强RP2预测的相关生物物理特征的潜力,尽管目前的观察结果需要进一步独立验证。