Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA.
Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA.
Sci Adv. 2017 Sep 20;3(9):e1701386. doi: 10.1126/sciadv.1701386. eCollection 2017 Sep.
Cancer cells afflicted with mutations in the breast cancer susceptibility protein (BRCA1) often suffer from increased DNA damage and genomic instability. The precise manner in which physical changes to BRCA1 influence its role in DNA maintenance remains unclear. We used single-particle electron microscopy to study the three-dimensional properties of BRCA1 naturally produced in breast cancer cells. Structural studies revealed new information for full-length BRCA1, engaging its nuclear binding partner, the BRCA1-associated RING domain protein (BARD1). Equally important, we identified a region in mutated BRCA1 that was highly susceptible to ubiquitination. We refer to this site as a modification "hotspot." Ubiquitin adducts in the hotspot region proved to be biochemically reversible. Collectively, we show how key changes to BRCA1 affect its structure-function relationship, and present new insights to potentially modulate mutated BRCA1 in human cancer cells.
患有乳腺癌易感蛋白 (BRCA1) 基因突变的癌细胞往往会遭受更多的 DNA 损伤和基因组不稳定。BRCA1 的物理变化如何影响其在 DNA 维持中的作用仍不清楚。我们使用单颗粒电子显微镜研究了乳腺癌细胞中天然产生的 BRCA1 的三维特性。结构研究为全长 BRCA1 提供了新的信息,包括其与核结合伙伴 BRCA1 相关环结构域蛋白 (BARD1) 的结合。同样重要的是,我们在突变的 BRCA1 中鉴定出一个高度易发生泛素化的区域。我们将该区域称为修饰“热点”。热点区域的泛素加合物在生化上是可逆的。总的来说,我们展示了 BRCA1 的关键变化如何影响其结构-功能关系,并为潜在调节人类癌细胞中突变的 BRCA1 提供了新的见解。