Rangel Tonatiuh, Fregoso Benjamin M, Mendoza Bernardo S, Morimoto Takahiro, Moore Joel E, Neaton Jeffrey B
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Department of Physics, University of California, Berkeley, California 94720, USA.
Phys Rev Lett. 2017 Aug 11;119(6):067402. doi: 10.1103/PhysRevLett.119.067402. Epub 2017 Aug 8.
We use a first-principles density functional theory approach to calculate the shift current and linear absorption of uniformly illuminated single-layer Ge and Sn monochalcogenides. We predict strong absorption in the visible spectrum and a large effective three-dimensional shift current (∼100 μA/V^{2}), larger than has been previously observed in other polar systems. Moreover, we show that the integral of the shift-current tensor is correlated to the large spontaneous effective three-dimensional electric polarization (∼1.9 C/m^{2}). Our calculations indicate that the shift current will be largest in the visible spectrum, suggesting that these monochalcogenides may be promising for polar optoelectronic devices. A Rice-Mele tight-binding model is used to rationalize the shift-current response for these systems, and its dependence on polarization, in general terms with implications for other polar materials.
我们采用第一性原理密度泛函理论方法来计算均匀光照下单层锗和锡的单硫属化物的转移电流和线性吸收。我们预测在可见光谱中有强烈吸收以及较大的有效三维转移电流(约100 μA/V²),这比之前在其他极性体系中观察到的要大。此外,我们表明转移电流张量的积分与大的自发有效三维电极化(约1.9 C/m²)相关。我们的计算表明转移电流在可见光谱中最大,这表明这些单硫属化物对于极性光电器件可能很有前景。使用赖斯 - 梅勒紧束缚模型来合理化这些体系的转移电流响应及其对极化的依赖性,一般而言这对其他极性材料也有启示。