Suppr超能文献

基于各向同性均匀湍流能量级联分叉分析的统计李雅普诺夫理论:物理数学综述

Statistical Lyapunov Theory Based on Bifurcation Analysis of Energy Cascade in Isotropic Homogeneous Turbulence: A Physical-Mathematical Review.

作者信息

de Divitiis Nicola

机构信息

Department of Mechanical and Aerospace Engineering, "La Sapienza" University, Via Eudossiana, 18, 00184 Rome, Italy.

出版信息

Entropy (Basel). 2019 May 23;21(5):520. doi: 10.3390/e21050520.

Abstract

This work presents a review of previous articles dealing with an original turbulence theory proposed by the author and provides new theoretical insights into some related issues. The new theoretical procedures and methodological approaches confirm and corroborate the previous results. These articles study the regime of homogeneous isotropic turbulence for incompressible fluids and propose theoretical approaches based on a specific Lyapunov theory for determining the closures of the von Kármán-Howarth and Corrsin equations and the statistics of velocity and temperature difference. While numerous works are present in the literature which concern the closures of the autocorrelation equations in the Fourier domain (i.e., Lin equation closure), few articles deal with the closures of the autocorrelation equations in the physical space. These latter, being based on the eddy-viscosity concept, describe diffusive closure models. On the other hand, the proposed Lyapunov theory leads to nondiffusive closures based on the property that, in turbulence, contiguous fluid particles trajectories continuously diverge. Therefore, the main motivation of this review is to present a theoretical formulation which does not adopt the eddy-viscosity paradigm and summarizes the results of the previous works. Next, this analysis assumes that the current fluid placements, together with velocity and temperature fields, are fluid state variables. This leads to the closures of the autocorrelation equations and helps to interpret the mechanism of energy cascade as due to the continuous divergence of the contiguous trajectories. Furthermore, novel theoretical issues are here presented among which we can mention the following ones. The bifurcation rate of the velocity gradient, calculated along fluid particles trajectories, is shown to be much larger than the corresponding maximal Lyapunov exponent. On that basis, an interpretation of the energy cascade phenomenon is given and the statistics of finite time Lyapunov exponent of the velocity gradient is shown to be represented by normal distribution functions. Next, the self-similarity produced by the proposed closures is analyzed and a proper bifurcation analysis of the closed von Kármán-Howarth equation is performed. This latter investigates the route from developed turbulence toward the non-chaotic regimes, leading to an estimate of the critical Taylor scale Reynolds number. A proper statistical decomposition based on extended distribution functions and on the Navier-Stokes equations is presented, which leads to the statistics of velocity and temperature difference.

摘要

这项工作对之前涉及作者提出的原始湍流理论的文章进行了综述,并对一些相关问题提供了新的理论见解。新的理论程序和方法途径证实并确证了先前的结果。这些文章研究了不可压缩流体的均匀各向同性湍流状态,并基于特定的李雅普诺夫理论提出了理论方法,用于确定冯·卡门 - 豪沃思方程和科尔辛方程的封闭形式以及速度和温差的统计量。虽然文献中有许多关于傅里叶域中自相关方程封闭形式的研究(即林方程封闭),但很少有文章涉及物理空间中自相关方程的封闭形式。后者基于涡粘性概念,描述了扩散封闭模型。另一方面,所提出的李雅普诺夫理论基于湍流中相邻流体粒子轨迹不断发散的特性,导致了非扩散封闭形式。因此,本综述的主要动机是提出一种不采用涡粘性范式的理论表述,并总结先前工作的结果。接下来,该分析假设当前的流体布局以及速度和温度场是流体状态变量。这导致了自相关方程的封闭,并有助于将能量级串的机制解释为相邻轨迹的持续发散。此外,这里还提出了一些新的理论问题,其中可以提及以下几点。沿流体粒子轨迹计算的速度梯度的分岔率被证明远大于相应的最大李雅普诺夫指数。在此基础上,给出了能量级串现象的一种解释,并且速度梯度的有限时间李雅普诺夫指数的统计量被证明由正态分布函数表示。接下来,分析了所提出的封闭形式产生的自相似性,并对封闭的冯·卡门 - 豪沃思方程进行了适当的分岔分析。后者研究了从充分发展的湍流到非混沌状态的路径,从而得到临界泰勒尺度雷诺数的估计值。提出了一种基于扩展分布函数和纳维 - 斯托克斯方程的适当统计分解方法,该方法导致了速度和温差的统计量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7863/7515010/fed0bd713aca/entropy-21-00520-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验