School of Physics and Astronomy, University of Edinburgh, JCMB, King's Buildings, Peter Guthrie Tait Road EH9 3FD, Edinburgh, United Kingdom.
Phys Rev E. 2019 Oct;100(4-1):041101. doi: 10.1103/PhysRevE.100.041101.
We study the Reynolds number scaling of the Kolmogorov-Sinai entropy and attractor dimension for three-dimensional homogeneous isotropic turbulence through the use of direct numerical simulation. To do so, we obtain Lyapunov spectra for a range of different Reynolds numbers by following the divergence of a large number of orthogonal fluid trajectories. We find that the attractor dimension grows with the Reynolds number as Re^{2.35} with this exponent being larger than predicted by either dimensional arguments or intermittency models. The distribution of Lyapunov exponents is found to be finite around λ≈0 contrary to a possible divergence suggested by Ruelle. The relevance of the Kolmogorov-Sinai entropy and Lyapunov spectra in comparing complex physical systems is discussed.
我们通过直接数值模拟研究了三维各向同性均匀湍流的雷诺数标度的 Kolmogorov-Sinai 熵和吸引子维数。为此,我们通过跟踪大量正交流轨迹的散度,获得了一系列不同雷诺数的 Lyapunov 谱。我们发现,吸引子维数随雷诺数增长的指数为 Re^{2.35},该指数大于维度论证或间歇性模型的预测值。与 Ruelle 提出的可能发散相反,我们发现 Lyapunov 指数的分布在 λ≈0 附近是有限的。讨论了 Kolmogorov-Sinai 熵和 Lyapunov 谱在比较复杂物理系统中的相关性。