Department of Chemistry, University of Texas at El Paso, El Paso, TX, 79968, USA.
Department of Chemistry, Columbia University, New York, NY, 10027, USA.
Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14648-14652. doi: 10.1002/anie.201706895. Epub 2017 Oct 17.
Two cove-edge graphene nanoribbons hPDI2-Pyr-hPDI2 (1) and hPDI3-Pyr-hPDI3 (2) are used as efficient electron-transporting materials (ETMs) in inverted planar perovskite solar cells (PSCs). Devices based on the new graphene nanoribbons exhibit maximum power-conversion efficiencies (PCEs) of 15.6 % and 16.5 % for 1 and 2, respectively, while a maximum PCE of 14.9 % is achieved with devices based on [6,6]-phenyl-C -butyric acid methyl ester (PC BM). The interfacial effects induced by these new materials are studied using photoluminescence (PL), and we find that 1 and 2 act as efficient electron-extraction materials. Additionally, compared with PC BM, these new materials are more hydrophobic and have slightly higher LUMO energy levels, thus providing better device performance and higher device stability.
两个 Cove 边缘石墨烯纳米带 hPDI2-Pyr-hPDI2(1)和 hPDI3-Pyr-hPDI3(2)被用作倒置平面钙钛矿太阳能电池(PSCs)中的高效电子传输材料(ETM)。基于新的石墨烯纳米带的器件分别表现出 15.6%和 16.5%的最大功率转换效率(PCE),而基于[6,6]-苯基-C-丁酸甲酯(PC BM)的器件则实现了 14.9%的最大 PCE。使用光致发光(PL)研究了这些新材料引起的界面效应,我们发现 1 和 2 作为有效的电子提取材料。此外,与 PC BM 相比,这些新材料具有更高的疏水性和略微更高的 LUMO 能级,从而提供更好的器件性能和更高的器件稳定性。