Belousov Roman, Cohen E G D, Rondoni Lamberto
The Rockefeller University, New York 10065, USA.
The Rockefeller University, New York 10065, USA and Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA.
Phys Rev E. 2017 Aug;96(2-1):022125. doi: 10.1103/PhysRevE.96.022125. Epub 2017 Aug 14.
The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.
本文基于二阶随机涨落理论在描述平衡态和非平衡态物理系统的时间自相关方面的近期成功。特别地,在简单流体的微观分子动力学模型中,该理论被证明能给出库埃特流朗之万方程相关确定性参数的值。在本文中,我们找出了随机动力学的所有其余常数,然后对其进行数值模拟,并直接与原始物理系统进行比较。利用这些数据,我们从理论和计算上详细研究了非平衡态物理系统二阶朗之万模型的准确性和精确性。我们发现了外加外力与所得流动涨落的累积量之间的一种有趣关系。这表现为一个无热累积量比的线性依赖关系,这里引入了一个相对应的量。此外,我们讨论了如何通过引入有色噪声系统地提高给定朗之万动力学的阶数。