Suppr超能文献

用于解决三维晶格上的HP模型并探究氨基酸突变后蛋白质稳定性的混合方法。

Hybrid method to solve HP model on 3D lattice and to probe protein stability upon amino acid mutations.

作者信息

Guo Yuzhen, Tao Fengying, Wu Zikai, Wang Yong

机构信息

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, People's Republic of China.

University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.

出版信息

BMC Syst Biol. 2017 Sep 21;11(Suppl 4):93. doi: 10.1186/s12918-017-0459-4.

Abstract

BACKGROUND

Predicting protein structure from amino acid sequence is a prominent problem in computational biology. The long range interactions (or non-local interactions) are known as the main source of complexity for protein folding and dynamics and play the dominant role in the compact architecture. Some simple but exact model, such as HP model, captures the pain point for this difficult problem and has important implications to understand the mapping between protein sequence and structure.

RESULTS

In this paper, we formulate the biological problem into optimization model to study the hydrophobic-hydrophilic model on 3D square lattice. This is a combinatorial optimization problem and known as NP-hard. Particle swarm optimization is utilized as the heuristic framework to solve the hard problem. To avoid premature in computation, we incorporated the Tabu search strategy. In addition, a pulling strategy was designed to accelerate the convergence of algorithm based on the characteristic of native protein structure. Together a novel hybrid method combining particle swarm optimization, Tabu strategy, and pulling strategy can fold the amino acid sequences on 3D square lattice efficiently. Promising results are reported in several examples by comparing with existing methods. This allows us to use this tool to study the protein stability upon amino acid mutation on 3D lattice. In particular, we evaluate the effect of single amino acid mutation and double amino acids mutation via 3D HP lattice model and some useful insights are derived.

CONCLUSION

We propose a novel hybrid method to combine several heuristic strategies to study HP model on 3D lattice. The results indicate that our hybrid method can predict protein structure more accurately and efficiently. Furthermore, it serves as a useful tools to probe the protein stability on 3D lattice and provides some biological insights.

摘要

背景

从氨基酸序列预测蛋白质结构是计算生物学中的一个突出问题。长程相互作用(或非局部相互作用)被认为是蛋白质折叠和动力学复杂性的主要来源,并且在紧凑结构中起主导作用。一些简单但精确的模型,如HP模型,抓住了这个难题的痛点,对于理解蛋白质序列与结构之间的映射具有重要意义。

结果

在本文中,我们将生物学问题转化为优化模型,以研究三维方格上的疏水-亲水模型。这是一个组合优化问题,已知为NP难问题。粒子群优化被用作启发式框架来解决这个难题。为了避免计算中的早熟现象,我们引入了禁忌搜索策略。此外,基于天然蛋白质结构的特征设计了一种牵引策略来加速算法的收敛。一种结合粒子群优化、禁忌策略和牵引策略的新型混合方法能够有效地折叠三维方格上的氨基酸序列。通过与现有方法比较,在几个例子中报告了有希望的结果。这使我们能够使用这个工具来研究三维晶格上氨基酸突变后的蛋白质稳定性。特别是,我们通过三维HP晶格模型评估了单氨基酸突变和双氨基酸突变的影响,并得出了一些有用的见解。

结论

我们提出了一种新型混合方法,将几种启发式策略结合起来研究三维晶格上的HP模型。结果表明,我们的混合方法能够更准确、高效地预测蛋白质结构。此外,它是研究三维晶格上蛋白质稳定性的有用工具,并提供了一些生物学见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a1c/5615245/0bc4a1131b0d/12918_2017_459_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验