IEEE Trans Biomed Eng. 2018 Jul;65(7):1662-1671. doi: 10.1109/TBME.2017.2756869. Epub 2017 Sep 25.
This paper proposes a novel method to localize origins of premature ventricular contractions (PVCs) from 12-lead electrocardiography (ECG) using convolutional neural network (CNN) and a realistic computer heart model.
The proposed method consists of two CNNs (Segment CNN and Epi-Endo CNN) to classify among ventricular sources from 25 segments and from epicardium (Epi) or endocardium (Endo). The inputs are the full time courses and the first half of QRS complexes of 12-lead ECG, respectively. After registering the ventricle computer model with an individual patient's heart, the training datasets were generated by multiplying ventricular current dipoles derived from single pacing at various locations with patient-specific lead field. The origins of PVC are localized by calculating the weighted center of gravity of classification returned by the CNNs. A number of computer simulations were conducted to evaluate the proposed method under a variety of noise levels and heart registration errors. Furthermore, the proposed method was evaluated on 90 PVC beats from nine human patients with PVCs and compared against ablation outcome in the same patients.
The computer simulation evaluation returned relatively high accuracies for Segment CNN (∼78%) and Epi-Endo CNN (∼90%). Clinical testing in nine PVC patients resulted an averaged localization error of 11 mm.
Our simulation and clinical evaluation results demonstrate the capability and merits of the proposed CNN-based method for localization of PVC.
This paper suggests a new approach for cardiac source localization of origin of arrhythmias using only the 12-lead ECG by means of CNN, and may have important applications for future real-time monitoring and localizing origins of cardiac arrhythmias guiding ablation treatment.
本文提出了一种使用卷积神经网络(CNN)和真实心脏计算机模型从 12 导联心电图(ECG)定位室性期前收缩(PVC)起源的新方法。
该方法由两个 CNN(节段 CNN 和心外膜-心内膜 CNN)组成,用于从 25 个节段和心外膜(Epi)或心内膜(Endo)中分类心室源。输入分别为 12 导联 ECG 的完整时间过程和 QRS 复合体的前半部分。在将心室计算机模型与个体患者心脏配准后,通过将源自各种部位起搏的心室电流偶极与患者特定导联场相乘生成训练数据集。通过计算 CNN 返回的分类的加权重心来定位 PVC 的起源。进行了大量计算机模拟,以在各种噪声水平和心脏配准误差下评估所提出的方法。此外,还将该方法应用于 90 例 PVC 患者的 90 个 PVC 搏动,并与同一患者的消融结果进行比较。
计算机模拟评估返回了较高的节段 CNN(约 78%)和心外膜-心内膜 CNN(约 90%)的准确率。9 例 PVC 患者的临床测试得到的平均定位误差为 11mm。
我们的模拟和临床评估结果表明,基于 CNN 的方法用于定位 PVC 的起源具有能力和优势。
本文提出了一种使用 CNN 仅通过 12 导联 ECG 定位心律失常起源的新方法,可能对未来的实时监测和定位心脏心律失常起源指导消融治疗具有重要应用价值。