Suppr超能文献

BOATMAP:用于单形性心律失常起搏标测的贝叶斯优化主动靶向。

BOATMAP: Bayesian Optimization Active Targeting for Monomorphic Arrhythmia Pace-mapping.

机构信息

Rochester Institute of Technology, Rochester, NY, USA.

Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.

出版信息

Comput Biol Med. 2024 Nov;182:109201. doi: 10.1016/j.compbiomed.2024.109201. Epub 2024 Sep 28.

Abstract

Recent advances in machine learning and deep learning have presented new opportunities for learning to localize the origin of ventricular activation from 12-lead electrocardiograms (ECGs), an important step in guiding ablation therapies for ventricular tachycardia. Passively learning from population data is faced with challenges due to significant variations among subjects, and building a patient-specific model raises the open question of where to select pace-mapping data for training. This work introduces BOATMAP, a novel active learning approach designed to provide clinicians with interpretable guidance that progressively assists in locating the origin of ventricular activation from 12-lead ECGs. BOATMAP inverts the input-output relationship in traditional machine learning solutions to this problem and learns the similarity between a target ECG and a paced ECG as a function of the pacing site coordinates. Using Gaussian processes (GP) as a surrogate model, BOATMAP iteratively refines the estimated similarity landscape while providing suggestions to clinicians regarding the next optimal pacing site. Furthermore, it can incorporate constraints to avoid suggesting pacing in non-viable regions such as the core of the myocardial scar. Tested in a realistic simulation environment in various heart geometries and tissue properties, BOATMAP demonstrated the ability to accurately localize the origin of activation, achieving an average localization accuracy of 3.9±3.6mm with only 8.0±4.0 pacing sites. BOATMAP offers real-time interpretable guidance for accurate localization and enhancing clinical decision-making.

摘要

机器学习和深度学习的最新进展为从 12 导联心电图 (ECG) 中学习心室激动起源的本地化提供了新的机会,这是指导室性心动过速消融治疗的重要步骤。由于个体之间存在显著差异,从人群数据中被动学习面临挑战,而建立患者特异性模型则提出了一个开放性问题,即在哪里选择起搏映射数据进行训练。这项工作引入了 BOATMAP,这是一种新颖的主动学习方法,旨在为临床医生提供可解释的指导,逐步协助从 12 导联 ECG 中定位心室激动的起源。BOATMAP 反转了传统机器学习解决方案中输入-输出关系的问题,并将目标 ECG 与起搏 ECG 之间的相似性学习为起搏部位坐标的函数。使用高斯过程 (GP) 作为替代模型,BOATMAP 迭代地细化估计的相似性景观,同时向临床医生提供有关下一个最佳起搏部位的建议。此外,它可以结合约束条件,以避免在心肌瘢痕核心等非可行区域建议起搏。在各种心脏几何形状和组织特性的现实模拟环境中进行测试,BOATMAP 展示了准确定位激活起源的能力,仅使用 8.0±4.0 个起搏部位即可实现平均定位精度 3.9±3.6mm。BOATMAP 为准确的本地化提供了实时可解释的指导,增强了临床决策。

相似文献

本文引用的文献

4
Prediction of premature ventricular complex origins using artificial intelligence-enabled algorithms.使用人工智能算法预测室性早搏起源
Cardiovasc Digit Health J. 2020 Nov 28;2(1):76-83. doi: 10.1016/j.cvdhj.2020.11.006. eCollection 2021 Feb.
7
The openCARP simulation environment for cardiac electrophysiology.openCARP 心脏电生理模拟环境。
Comput Methods Programs Biomed. 2021 Sep;208:106223. doi: 10.1016/j.cmpb.2021.106223. Epub 2021 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验