Suppr超能文献

使用离散有序多通道颅内 EEG 的卷积神经网络检测发作间期放电。

Detection of Interictal Discharges With Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2285-2294. doi: 10.1109/TNSRE.2017.2755770. Epub 2017 Sep 22.

Abstract

Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features, which utilized specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this paper, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight toward the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilized as opposed to binary IED and non-IED labels. The resulting model achieves state-of-the-art classification performance and is also invariant to time differences between the IEDs. This paper suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the data.

摘要

脑电图 (EEG) 数据的检测算法,特别是在发作间期癫痫样放电 (IED) 检测领域,传统上采用了手工制作的特征,这些特征利用了神经响应的特定特征。尽管这些算法实现了高精度,但仅仅检测到 IED 在临床上意义不大。在本文中,我们考虑对癫痫患者进行深度学习,以适应从颅内 EEG 数据中自动生成特征,同时提供临床见解。卷积神经网络以独立于主体的方式进行训练,以展示在分层过程中如何自动学习有意义的特征。我们说明了在最深层的卷积滤波器中如何提供有关组内不同类型 IED 的见解,这一点得到了我们的专家临床医生的证实。在滤波器中找到的 IED 的形态可以帮助评估患者的治疗效果。为了提高深度学习模型的学习能力,使用了中等不同的分数类,而不是二进制 IED 和非 IED 标签。由此产生的模型实现了最先进的分类性能,并且对 IED 之间的时间差异也具有不变性。本文表明,深度学习适用于从颅内 EEG 数据中自动生成特征,同时还能提供对数据的深入了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验