Suppr超能文献

仿生和天然蜘蛛丝优异韧性的基础。

Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk.

机构信息

Peter Debye Institute for Soft Matter Physics, Leipzig University , Linnéstr. 5, D-04103 Leipzig, Germany.

Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstr. 30, D-95440 Bayreuth, Germany.

出版信息

Biomacromolecules. 2017 Dec 11;18(12):3954-3962. doi: 10.1021/acs.biomac.7b00990. Epub 2017 Oct 17.

Abstract

Spider dragline silk is distinguished through the highest toughness of all natural as well as artificial fiber materials. To unravel the toughness's molecular foundation and to enable manufacturing biomimetic analogues, we investigated the morphological and functional structure of recombinant fibers, which exhibit toughness similar to that of the natural template, on the molecular scale by means of vibrational spectroscopy and on the mesoscale by X-ray scattering. Whereas the former was used to identify protein secondary structures and their alignment in the natural as well as artificial silks, the latter revealed nanometer-sized crystallites on the higher structural level. Furthermore, a spectral red shift of a crystal-specific absorption band demonstrated that macroscopically applied stress is directly transferred to the molecular scale, where it is finally dissipated. Concerning this feature, both the natural as well as the biomimetic fibers are almost indistinguishable, giving rise to the toughness of both fiber materials.

摘要

蜘蛛牵引丝以所有天然和人造纤维材料中最高的韧性而闻名。为了解开这种韧性的分子基础,并制造仿生类似物,我们通过振动光谱在分子尺度上,以及通过 X 射线散射在介观尺度上,研究了在形态和功能结构上与天然模板相似的重组纤维。前者用于识别天然和人工丝中蛋白质的二级结构及其排列,后者则揭示了更高结构水平上纳米级的微晶。此外,一个晶体特定吸收带的光谱红移表明,宏观施加的应力直接传递到分子尺度,最终在那里耗散。关于这一特性,天然纤维和仿生纤维几乎无法区分,这也是两种纤维材料具有韧性的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验