Suppr超能文献

使用基于格点的模型定量研究二相酵母的主要生长机制。

Quantifying the dominant growth mechanisms of dimorphic yeast using a lattice-based model.

机构信息

School of Mathematical Sciences, Waite Campus, University of Adelaide, Adelaide, South Australia 5005, Australia

Department of Wine and Food Science, Waite Campus, University of Adelaide, Urrbrae, SA 5064, Australia.

出版信息

J R Soc Interface. 2017 Sep;14(134). doi: 10.1098/rsif.2017.0314.

Abstract

A mathematical model is presented for the growth of yeast that incorporates both dimorphic behaviour and nutrient diffusion. The budding patterns observed in the standard and pseudohyphal growth modes are represented by a bias in the direction of cell proliferation. A set of spatial indices is developed to quantify the morphology and compare the relative importance of the directional bias to nutrient concentration and diffusivity on colony shape. It is found that there are three different growth modes: uniform growth, diffusion-limited growth (DLG) and an intermediate region in which the bias determines the morphology. The dimorphic transition due to nutrient limitation is investigated by relating the directional bias to the nutrient concentration, and this is shown to replicate the behaviour observed Comparisons are made with experimental data, from which it is found that the model captures many of the observed features. Both DLG and pseudohyphal growth are found to be capable of generating observed experimental morphologies.

摘要

提出了一个用于酵母生长的数学模型,该模型结合了二态行为和营养物质扩散。通过细胞增殖方向的偏差来表示标准和假菌丝生长模式中观察到的出芽模式。开发了一组空间指数来量化形态,并比较方向偏差对菌落形状的相对重要性,与营养浓度和扩散率。发现存在三种不同的生长模式:均匀生长、扩散限制生长(DLG)和中间区域,其中偏差决定形态。通过将方向偏差与营养浓度相关联,研究了由于营养限制引起的二态转变,这复制了观察到的行为。与实验数据进行了比较,结果表明该模型捕捉到了许多观察到的特征。发现 DLG 和假菌丝生长都能够产生观察到的实验形态。

相似文献

1
Quantifying the dominant growth mechanisms of dimorphic yeast using a lattice-based model.
J R Soc Interface. 2017 Sep;14(134). doi: 10.1098/rsif.2017.0314.
2
Diffusion-Limited Growth of Microbial Colonies.
Sci Rep. 2018 Apr 16;8(1):5992. doi: 10.1038/s41598-018-23649-z.
3
Characterizing the shape patterns of dimorphic yeast pseudohyphae.
R Soc Open Sci. 2018 Oct 17;5(10):180820. doi: 10.1098/rsos.180820. eCollection 2018 Oct.
4
Quantifying two-dimensional filamentous and invasive growth spatial patterns in yeast colonies.
PLoS Comput Biol. 2015 Feb 26;11(2):e1004070. doi: 10.1371/journal.pcbi.1004070. eCollection 2015 Feb.
5
Enhancement of superficial pseudohyphal growth by overexpression of the SFG1 gene in yeast Saccharomyces cerevisiae.
Gene. 2005 Dec 19;363:97-104. doi: 10.1016/j.gene.2005.06.036. Epub 2005 Nov 9.
6
Nutrient-limited growth with non-linear cell diffusion as a mechanism for floral pattern formation in yeast biofilms.
J Theor Biol. 2018 Jul 7;448:122-141. doi: 10.1016/j.jtbi.2018.04.004. Epub 2018 Apr 7.
7
Phase-specific protein expression in the dimorphic yeast Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 1997 Apr 17;233(2):480-6. doi: 10.1006/bbrc.1997.6461.
8
Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog.
EMBO J. 1997 Dec 1;16(23):7008-18. doi: 10.1093/emboj/16.23.7008.
9
Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology.
Res Microbiol. 2005 Mar;156(2):191-200. doi: 10.1016/j.resmic.2004.09.008. Epub 2004 Dec 10.
10
The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
EMBO J. 1998 Aug 10;17(5):1236-47. doi: 10.1093/emboj/17.5.1236.

引用本文的文献

1
An off-lattice discrete model to characterise filamentous yeast colony morphology.
PLoS Comput Biol. 2024 Nov 21;20(11):e1012605. doi: 10.1371/journal.pcbi.1012605. eCollection 2024 Nov.
2
Integrative analysis of yeast colony growth.
Commun Biol. 2024 Apr 29;7(1):511. doi: 10.1038/s42003-024-06218-1.
4
A Model for Cell Proliferation in a Developing Organism.
J Math Biol. 2022 Jun 25;84(7):63. doi: 10.1007/s00285-022-01769-5.
5
Saccharomyces cerevisiae does not undergo a quorum sensing-dependent switch of budding pattern.
Sci Rep. 2022 May 24;12(1):8738. doi: 10.1038/s41598-022-12308-z.
6
A thin-film extensional flow model for biofilm expansion by sliding motility.
Proc Math Phys Eng Sci. 2019 Sep;475(2229):20190175. doi: 10.1098/rspa.2019.0175. Epub 2019 Sep 4.
7
Variation in Filamentous Growth and Response to Quorum-Sensing Compounds in Environmental Isolates of .
G3 (Bethesda). 2019 May 7;9(5):1533-1544. doi: 10.1534/g3.119.400080.
8
TAMMiCol: Tool for analysis of the morphology of microbial colonies.
PLoS Comput Biol. 2018 Dec 3;14(12):e1006629. doi: 10.1371/journal.pcbi.1006629. eCollection 2018 Dec.
9
Characterizing the shape patterns of dimorphic yeast pseudohyphae.
R Soc Open Sci. 2018 Oct 17;5(10):180820. doi: 10.1098/rsos.180820. eCollection 2018 Oct.
10
Diffusion-Limited Growth of Microbial Colonies.
Sci Rep. 2018 Apr 16;8(1):5992. doi: 10.1038/s41598-018-23649-z.

本文引用的文献

1
Identifying the necrotic zone boundary in tumour spheroids with pair-correlation functions.
J R Soc Interface. 2016 Oct;13(123). doi: 10.1098/rsif.2016.0649.
2
Spectral analysis of pair-correlation bandwidth: application to cell biology images.
R Soc Open Sci. 2015 Feb 11;2(2):140494. doi: 10.1098/rsos.140494. eCollection 2015 Feb.
3
Investigating filamentous growth and biofilm/mat formation in budding yeast.
Cold Spring Harb Protoc. 2015 Mar 2;2015(3):235-8. doi: 10.1101/pdb.top077495.
4
Quantifying two-dimensional filamentous and invasive growth spatial patterns in yeast colonies.
PLoS Comput Biol. 2015 Feb 26;11(2):e1004070. doi: 10.1371/journal.pcbi.1004070. eCollection 2015 Feb.
5
Branching instability in expanding bacterial colonies.
J R Soc Interface. 2015 Mar 6;12(104):20141290. doi: 10.1098/rsif.2014.1290.
6
Two-dimensionality of yeast colony expansion accompanied by pattern formation.
PLoS Comput Biol. 2014 Dec 11;10(12):e1003979. doi: 10.1371/journal.pcbi.1003979. eCollection 2014 Dec.
8
Assessing the role of spatial correlations during collective cell spreading.
Sci Rep. 2014 Jul 16;4:5713. doi: 10.1038/srep05713.
9
Distinguishing between mechanisms of cell aggregation using pair-correlation functions.
J Theor Biol. 2014 Jul 7;352:16-23. doi: 10.1016/j.jtbi.2014.02.033. Epub 2014 Mar 5.
10
Quantitative analysis of colony morphology in yeast.
Biotechniques. 2014 Jan;56(1):18-27. doi: 10.2144/000114123.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验