Suppr超能文献

TAMMiCol:微生物菌落形态分析工具。

TAMMiCol: Tool for analysis of the morphology of microbial colonies.

机构信息

School of Mathematical Sciences, University of Adelaide, Adelaide, Australia.

Department of Wine and Food Science, University of Adelaide, Adelaide, Australia.

出版信息

PLoS Comput Biol. 2018 Dec 3;14(12):e1006629. doi: 10.1371/journal.pcbi.1006629. eCollection 2018 Dec.

Abstract

Many microbes are studied by examining colony morphology via two-dimensional top-down images. The quantification of such images typically requires each pixel to be labelled as belonging to either the colony or background, producing a binary image. While this may be achieved manually for a single colony, this process is infeasible for large datasets containing thousands of images. The software Tool for Analysis of the Morphology of Microbial Colonies (TAMMiCol) has been developed to efficiently and automatically convert colony images to binary. TAMMiCol exploits the structure of the images to choose a thresholding tolerance and produce a binary image of the colony. The images produced are shown to compare favourably with images processed manually, while TAMMiCol is shown to outperform standard segmentation methods. Multiple images may be imported together for batch processing, while the binary data may be exported as a CSV or MATLAB MAT file for quantification, or analysed using statistics built into the software. Using the in-built statistics, it is found that images produced by TAMMiCol yield values close to those computed from binary images processed manually. Analysis of a new large dataset using TAMMiCol shows that colonies of Saccharomyces cerevisiae reach a maximum level of filamentous growth once the concentration of ammonium sulfate is reduced to 200 μM. TAMMiCol is accessed through a graphical user interface, making it easy to use for those without specialist knowledge of image processing, statistical methods or coding.

摘要

许多微生物是通过二维自上而下的图像来研究其菌落形态的。对这些图像的定量分析通常需要将每个像素标记为属于菌落或背景,生成二值图像。虽然对于单个菌落可以手动完成此过程,但对于包含数千张图像的大型数据集,此过程是不可行的。为了高效、自动地将菌落图像转换为二值图像,开发了微生物菌落形态分析工具(Tool for Analysis of the Morphology of Microbial Colonies,TAMMiCol)。TAMMiCol 利用图像的结构来选择阈值容差,并生成菌落的二值图像。生成的图像与手动处理的图像相比表现出色,同时 TAMMiCol 也优于标准分割方法。可以一起导入多个图像进行批处理,也可以将二进制数据导出为 CSV 或 MATLAB MAT 文件进行量化,或使用软件内置的统计信息进行分析。使用内置统计信息发现,TAMMiCol 生成的图像产生的值接近手动处理的二进制图像计算的值。使用 TAMMiCol 对新的大型数据集进行分析表明,一旦将硫酸铵浓度降低到 200 μM,酿酒酵母的菌落就会达到丝状生长的最大值。TAMMiCol 通过图形用户界面访问,对于没有图像处理、统计方法或编码专业知识的人来说,使用起来非常方便。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b0/6292648/54d9d32ab4bb/pcbi.1006629.g001.jpg

相似文献

1
TAMMiCol: Tool for analysis of the morphology of microbial colonies.
PLoS Comput Biol. 2018 Dec 3;14(12):e1006629. doi: 10.1371/journal.pcbi.1006629. eCollection 2018 Dec.
3
Quantifying two-dimensional filamentous and invasive growth spatial patterns in yeast colonies.
PLoS Comput Biol. 2015 Feb 26;11(2):e1004070. doi: 10.1371/journal.pcbi.1004070. eCollection 2015 Feb.
4
Development of image processing program for yeast cell morphology.
J Bioinform Comput Biol. 2004 Jan;1(4):695-709. doi: 10.1142/s0219720004000363.
5
Using CellProfiler for Automatic Identification and Measurement of Biological Objects in Images.
Curr Protoc Mol Biol. 2015 Jan 5;109:14.17.1-14.17.13. doi: 10.1002/0471142727.mb1417s109.
8
FogBank: a single cell segmentation across multiple cell lines and image modalities.
BMC Bioinformatics. 2014 Dec 30;15(1):431. doi: 10.1186/s12859-014-0431-x.
9
Spotsizer: High-throughput quantitative analysis of microbial growth.
Biotechniques. 2016 Oct 1;61(4):191-201. doi: 10.2144/000114459.
10
gitter: a robust and accurate method for quantification of colony sizes from plate images.
G3 (Bethesda). 2014 Mar 20;4(3):547-52. doi: 10.1534/g3.113.009431.

引用本文的文献

1
[PSI]-CIC: A Deep-Learning Pipeline for the Annotation of Sectored Saccharomyces cerevisiae Colonies.
Bull Math Biol. 2024 Dec 6;87(1):12. doi: 10.1007/s11538-024-01379-w.
2
An off-lattice discrete model to characterise filamentous yeast colony morphology.
PLoS Comput Biol. 2024 Nov 21;20(11):e1012605. doi: 10.1371/journal.pcbi.1012605. eCollection 2024 Nov.
4
A Deep Learning Approach to Capture the Essence of Candida albicans Morphologies.
Microbiol Spectr. 2022 Oct 26;10(5):e0147222. doi: 10.1128/spectrum.01472-22. Epub 2022 Aug 16.
5
Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi.
PLoS Comput Biol. 2019 Oct 31;15(10):e1007428. doi: 10.1371/journal.pcbi.1007428. eCollection 2019 Oct.

本文引用的文献

1
ToBio: Global Pathway Similarity Search Based on Topological and Biological Features.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):336-349. doi: 10.1109/TCBB.2017.2769642. Epub 2017 Nov 3.
2
Diffusion-Limited Growth of Microbial Colonies.
Sci Rep. 2018 Apr 16;8(1):5992. doi: 10.1038/s41598-018-23649-z.
3
Nutrient-limited growth with non-linear cell diffusion as a mechanism for floral pattern formation in yeast biofilms.
J Theor Biol. 2018 Jul 7;448:122-141. doi: 10.1016/j.jtbi.2018.04.004. Epub 2018 Apr 7.
4
Quantifying the dominant growth mechanisms of dimorphic yeast using a lattice-based model.
J R Soc Interface. 2017 Sep;14(134). doi: 10.1098/rsif.2017.0314.
5
Quantifying two-dimensional filamentous and invasive growth spatial patterns in yeast colonies.
PLoS Comput Biol. 2015 Feb 26;11(2):e1004070. doi: 10.1371/journal.pcbi.1004070. eCollection 2015 Feb.
6
Automated counting of bacterial colonies by image analysis.
J Microbiol Methods. 2015 Jan;108:74-82. doi: 10.1016/j.mimet.2014.11.009. Epub 2014 Nov 21.
7
Quantitative analysis of colony morphology in yeast.
Biotechniques. 2014 Jan;56(1):18-27. doi: 10.2144/000114123.
8
EC-BLAST: a tool to automatically search and compare enzyme reactions.
Nat Methods. 2014 Feb;11(2):171-4. doi: 10.1038/nmeth.2803. Epub 2014 Jan 12.
9
An algorithm to automate yeast segmentation and tracking.
PLoS One. 2013;8(3):e57970. doi: 10.1371/journal.pone.0057970. Epub 2013 Mar 8.
10
Global gene deletion analysis exploring yeast filamentous growth.
Science. 2012 Sep 14;337(6100):1353-6. doi: 10.1126/science.1224339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验