Suppr超能文献

营养限制生长和非线性细胞扩散作为酵母生物膜中花型形成的机制。

Nutrient-limited growth with non-linear cell diffusion as a mechanism for floral pattern formation in yeast biofilms.

机构信息

School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

出版信息

J Theor Biol. 2018 Jul 7;448:122-141. doi: 10.1016/j.jtbi.2018.04.004. Epub 2018 Apr 7.

Abstract

Previous experiments have shown that mature yeast mat biofilms develop a floral morphology, characterised by the formation of petal-like structures. In this work, we investigate the hypothesis that nutrient-limited growth is the mechanism by which these floral patterns form. To do this, we use a combination of experiments and mathematical analysis. In mat formation experiments of the yeast species Saccharomyces cerevisiae, we observe that mats expand radially at a roughly constant speed, and eventually undergo a transition from circular to floral morphology. To determine the extent to which nutrient-limited growth can explain these features, we adopt a previously proposed mathematical model for yeast growth. The model consists of a coupled system of reaction-diffusion equations for the yeast cell density and nutrient concentration, with a non-linear, degenerate diffusion term for cell spread. Using geometric singular perturbation theory and numerics, we show that the model admits travelling wave solutions in one dimension, which enables us to infer the diffusion ratio from experimental data. We then use a linear stability analysis to show that two-dimensional planar travelling wave solutions for feasible experimental parameters are linearly unstable to non-planar perturbations. This provides a potential mechanism by which petals can form, and allows us to predict the characteristic petal width. There is good agreement between these predictions, numerical solutions to the model, and experimental data. We therefore conclude that the non-linear cell diffusion mechanism provides a possible explanation for pattern formation in yeast mat biofilms, without the need to invoke other mechanisms such as flow of extracellular fluid, cell adhesion, or changes to cellular shape or behaviour.

摘要

先前的实验表明,成熟的酵母生物膜会呈现出花状形态,其特征是形成花瓣状结构。在这项工作中,我们研究了营养限制生长是形成这些花型模式的机制的假设。为此,我们结合实验和数学分析。在酵母物种酿酒酵母的生物膜形成实验中,我们观察到生物膜以大致恒定的速度径向扩展,最终从圆形过渡到花状形态。为了确定营养限制生长在多大程度上可以解释这些特征,我们采用了先前提出的酵母生长数学模型。该模型由酵母细胞密度和营养浓度的反应扩散方程的耦合系统组成,具有用于细胞扩展的非线性、退化扩散项。使用几何奇异摄动理论和数值方法,我们表明该模型在一维空间中存在行波解,这使我们能够从实验数据中推断出扩散比。然后,我们使用线性稳定性分析表明,对于可行的实验参数,二维平面行波解对于非平面扰动是线性不稳定的。这为花瓣的形成提供了一种潜在的机制,并允许我们预测特征花瓣宽度。这些预测与模型的数值解和实验数据之间有很好的一致性。因此,我们得出结论,非线性细胞扩散机制为酵母生物膜中的模式形成提供了一种可能的解释,而无需引入其他机制,如细胞外流体的流动、细胞粘附或细胞形状或行为的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验