School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
J Theor Biol. 2018 Jul 7;448:122-141. doi: 10.1016/j.jtbi.2018.04.004. Epub 2018 Apr 7.
Previous experiments have shown that mature yeast mat biofilms develop a floral morphology, characterised by the formation of petal-like structures. In this work, we investigate the hypothesis that nutrient-limited growth is the mechanism by which these floral patterns form. To do this, we use a combination of experiments and mathematical analysis. In mat formation experiments of the yeast species Saccharomyces cerevisiae, we observe that mats expand radially at a roughly constant speed, and eventually undergo a transition from circular to floral morphology. To determine the extent to which nutrient-limited growth can explain these features, we adopt a previously proposed mathematical model for yeast growth. The model consists of a coupled system of reaction-diffusion equations for the yeast cell density and nutrient concentration, with a non-linear, degenerate diffusion term for cell spread. Using geometric singular perturbation theory and numerics, we show that the model admits travelling wave solutions in one dimension, which enables us to infer the diffusion ratio from experimental data. We then use a linear stability analysis to show that two-dimensional planar travelling wave solutions for feasible experimental parameters are linearly unstable to non-planar perturbations. This provides a potential mechanism by which petals can form, and allows us to predict the characteristic petal width. There is good agreement between these predictions, numerical solutions to the model, and experimental data. We therefore conclude that the non-linear cell diffusion mechanism provides a possible explanation for pattern formation in yeast mat biofilms, without the need to invoke other mechanisms such as flow of extracellular fluid, cell adhesion, or changes to cellular shape or behaviour.
先前的实验表明,成熟的酵母生物膜会呈现出花状形态,其特征是形成花瓣状结构。在这项工作中,我们研究了营养限制生长是形成这些花型模式的机制的假设。为此,我们结合实验和数学分析。在酵母物种酿酒酵母的生物膜形成实验中,我们观察到生物膜以大致恒定的速度径向扩展,最终从圆形过渡到花状形态。为了确定营养限制生长在多大程度上可以解释这些特征,我们采用了先前提出的酵母生长数学模型。该模型由酵母细胞密度和营养浓度的反应扩散方程的耦合系统组成,具有用于细胞扩展的非线性、退化扩散项。使用几何奇异摄动理论和数值方法,我们表明该模型在一维空间中存在行波解,这使我们能够从实验数据中推断出扩散比。然后,我们使用线性稳定性分析表明,对于可行的实验参数,二维平面行波解对于非平面扰动是线性不稳定的。这为花瓣的形成提供了一种潜在的机制,并允许我们预测特征花瓣宽度。这些预测与模型的数值解和实验数据之间有很好的一致性。因此,我们得出结论,非线性细胞扩散机制为酵母生物膜中的模式形成提供了一种可能的解释,而无需引入其他机制,如细胞外流体的流动、细胞粘附或细胞形状或行为的变化。