Suppr超能文献

海马体γ-氨基丁酸能抑制性中间神经元

Hippocampal GABAergic Inhibitory Interneurons.

作者信息

Pelkey Kenneth A, Chittajallu Ramesh, Craig Michael T, Tricoire Ludovic, Wester Jason C, McBain Chris J

机构信息

Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France.

出版信息

Physiol Rev. 2017 Oct 1;97(4):1619-1747. doi: 10.1152/physrev.00007.2017.

Abstract

In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.

摘要

在海马体中,γ-氨基丁酸能局部回路抑制性中间神经元仅占神经元总数的约10-15%;然而,它们显著的解剖学和生理学多样性使它们能够调节细胞和回路功能的几乎所有方面。在这里,我们概述了中间神经元研究领域的当前状态,主要聚焦于海马体。我们讨论了与各种细胞类型相关的最新进展,包括它们的发育和成熟、亚型特异性电压门控和配体门控通道的表达,以及它们在网络振荡中的作用。我们还讨论了最近的技术进步和方法,这些技术和方法允许对它们在众多神经回路疾病中的作用进行高分辨率、亚型特异性检查,以及改善此类病理生理状况的新兴治疗策略。这篇综述的最终目标不仅是为该领域的当前状态提供一个试金石,而且是通过突出我们知识中的空白所在以及全面理解它们的作用将如何有助于未来的治疗策略,为未来的研究铺平道路。

相似文献

1
Hippocampal GABAergic Inhibitory Interneurons.
Physiol Rev. 2017 Oct 1;97(4):1619-1747. doi: 10.1152/physrev.00007.2017.
2
Cracking down on inhibition: selective removal of GABAergic interneurons from hippocampal networks.
J Neurosci. 2012 Feb 8;32(6):1989-2001. doi: 10.1523/JNEUROSCI.2720-11.2012.
3
Hippocampal GABAergic transmission: a new target for adenosine control of excitability.
J Neurochem. 2016 Dec;139(6):1056-1070. doi: 10.1111/jnc.13872. Epub 2016 Dec 14.
4
Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition.
Eur J Neurosci. 2002 May;15(9):1499-508. doi: 10.1046/j.1460-9568.2002.01985.x.
7
Turning the heterogeneous into homogeneous: studies on selectively isolated GABAergic interneuron subsets.
Int J Dev Neurosci. 2004 Nov;22(7):533-43. doi: 10.1016/j.ijdevneu.2004.07.012.
8
Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives.
Biol Psychiatry. 2017 Oct 15;82(8):549-559. doi: 10.1016/j.biopsych.2017.05.024. Epub 2017 Jun 8.
9
GABAergic-astrocyte signaling: A refinement of inhibitory brain networks.
Glia. 2019 Oct;67(10):1842-1851. doi: 10.1002/glia.23644. Epub 2019 May 30.
10
Seizures beget seizures: the quest for GABA as a key player.
Crit Rev Neurobiol. 2006;18(1-2):135-44. doi: 10.1615/critrevneurobiol.v18.i1-2.140.

引用本文的文献

4
An integrated transcriptomic and proteomic map of the mouse hippocampus at synaptic resolution.
Nat Commun. 2025 Aug 26;16(1):7942. doi: 10.1038/s41467-025-63119-5.
7
The atypical adhesion GPCR ADGRA1 controls hippocampal inhibitory circuit function.
bioRxiv. 2025 Jul 30:2025.07.30.667713. doi: 10.1101/2025.07.30.667713.
8
Hippocampal architecture viewed through the eyes of methodological development.
Anat Sci Int. 2025 Aug 5. doi: 10.1007/s12565-025-00878-7.

本文引用的文献

3
Behavior-dependent activity patterns of GABAergic long-range projecting neurons in the rat hippocampus.
Hippocampus. 2017 Apr;27(4):359-377. doi: 10.1002/hipo.22696. Epub 2017 Feb 2.
4
Fear Erasure Facilitated by Immature Inhibitory Neuron Transplantation.
Neuron. 2016 Dec 21;92(6):1352-1367. doi: 10.1016/j.neuron.2016.11.018. Epub 2016 Dec 8.
5
Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity.
J Neurosci. 2016 Nov 9;36(45):11459-11468. doi: 10.1523/JNEUROSCI.2351-16.2016.
6
Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission.
Brain Struct Funct. 2017 Jul;222(5):2345-2357. doi: 10.1007/s00429-016-1345-3. Epub 2016 Nov 30.
7
Cortical interneuron specification: the juncture of genes, time and geometry.
Curr Opin Neurobiol. 2017 Feb;42:17-24. doi: 10.1016/j.conb.2016.10.003. Epub 2016 Nov 24.
8
Brain stimulation as a neuromodulatory epilepsy therapy.
Seizure. 2017 Jan;44:169-175. doi: 10.1016/j.seizure.2016.10.026. Epub 2016 Nov 14.
9
Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons.
Nat Commun. 2016 Nov 17;7:13495. doi: 10.1038/ncomms13495.
10
Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord.
J Neurosci. 2016 Nov 16;36(46):11634-11645. doi: 10.1523/JNEUROSCI.2301-16.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验