Vargish Geoffrey A, Rice Haley, Yuan Xiaoqing, Hunt Steven, Caccavano Adam P, Hines Brendan E, Plotnikova Anya, Mohanty Arya, Furlanis Elisabetta, Wang Yating, Dai Min, Garcia Brenda Leyva, Cummins Alex C, Eldridge Mark A G, Averbeck Bruno B, Zaghloul Kareem A, Dimidschstein Jordane, Fishell Gord, Pelkey Kenneth A, McBain Chris J
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892 USA.
National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892 USA.
Res Sq. 2025 Aug 22:rs.3.rs-7268106. doi: 10.21203/rs.3.rs-7268106/v1.
The mammalian dentate gyrus contributes to mnemonic function by parsing similar events and places. The disparate activity patterns of mossy cells and granule cells are believed to enable this function yet the mechanisms that drive this circuit dynamic remain elusive. We identified a novel inhibitory interneuron subtype, characterized by VGluT3 expression, with overwhelming target selectivity for mossy cells while also revealing that CCK, PV, SST and VIP interneurons preferentially innervate granule cells. Leveraging pharmacology and novel enhancer viruses, we find that this target-specific inhibitory innervation pattern is evolutionarily conserved in non-human primates and humans. In addition, in vivo chemogenetic manipulation of VGluT3+ interneurons selectively alters the activity and functional properties of mossy cells. These findings establish that mossy cells and granule cells have unique, evolutionarily conserved inhibitory innervation patterns and suggest selective inhibitory circuits may be necessary to maintain DG circuit dynamics and enable pattern separation across species.
哺乳动物的齿状回通过解析相似的事件和地点来促进记忆功能。苔藓细胞和颗粒细胞不同的活动模式被认为促成了这一功能,然而驱动该神经回路动态变化的机制仍不清楚。我们鉴定出了一种新型抑制性中间神经元亚型,其特征为表达VGluT3,对苔藓细胞具有压倒性的靶标选择性,同时还发现胆囊收缩素(CCK)、小白蛋白(PV)、生长抑素(SST)和血管活性肠肽(VIP)中间神经元优先支配颗粒细胞。利用药理学和新型增强病毒,我们发现这种靶标特异性抑制性神经支配模式在非人类灵长类动物和人类中具有进化保守性。此外,对VGluT3+中间神经元进行体内化学遗传学操作可选择性地改变苔藓细胞的活性和功能特性。这些发现表明,苔藓细胞和颗粒细胞具有独特的、进化保守的抑制性神经支配模式,并提示选择性抑制性回路可能是维持齿状回神经回路动态变化并实现跨物种模式分离所必需的。