Forte Luca A, Gramlich Michael W, Klyachko Vitaly A
Department of Cell Biology and Physiology, Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110.
Department of Cell Biology and Physiology, Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110
J Neurosci. 2017 Nov 1;37(44):10597-10610. doi: 10.1523/JNEUROSCI.0383-17.2017. Epub 2017 Sep 27.
The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function.
突触的正常功能依赖于突触小泡的高效循环利用。突触小体的微小尺寸阻碍了人们确定小泡在循环利用过程中动态状态的努力。此外,在循环利用过程中,小泡运动是否受神经活动调节在很大程度上仍然未知。我们将对两性大鼠培养的海马神经元中单个突触小泡进行纳米级分辨率追踪与先进的运动分析相结合,以证明大多数最近内吞的小泡经历了一系列瞬态动态状态,包括定向运动、扩散运动和停滞运动阶段。我们观察到小泡运动以活动依赖的方式受到调节,约20%的观察到的突触小体出现了动态变化。在这个突触小体亚群中,35%观察到的小泡表现出加速,65%表现出减速,同时定向运动也有相应变化。在其余约80%的突触小体中观察到的单个小泡对刺激没有表现出明显的动态变化。更定量的瞬态运动分析表明,小泡流动性的总体降低,特别是定向运动成分的降低,是整个突触小体群体中主要的活动诱发变化。小泡流动性的活动依赖调节可能代表了控制小泡可用性和神经递质释放的重要机制。在循环利用过程中控制突触小泡动力学的机制仍然知之甚少。通过对海马突触中单个突触小泡进行纳米级分辨率追踪和先进的运动分析工具,我们证明突触小泡经历了复杂的动态状态集,包括定向、扩散和停滞运动阶段。最重要的是,我们的分析表明,小泡运动以活动依赖的方式受到调节,表现为对刺激的反应中总体小泡流动性的降低。这些结果定义了循环利用过程中小泡的动态状态,并揭示了它们的活动依赖调节。因此,我们的研究为控制突触功能的原理提供了全新的基本见解。