NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, 10016, USA.
Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
Nat Commun. 2020 Oct 21;11(1):5318. doi: 10.1038/s41467-020-19120-1.
Synaptic vesicles (SVs) can be pooled across multiple synapses, prompting questions about their dynamic allocation for neurotransmission and plasticity. We find that the axonal traffic of recycling vesicles is not supported by ubiquitous microtubule-based motility but relies on actin instead. Vesicles freed from synaptic clusters undergo ~1 µm bouts of active transport, initiated by nearby elongation of actin filaments. Long distance translocation arises when successive bouts of active transport were linked by periods of free diffusion. The availability of SVs for active transport can be promptly increased by protein kinase A, a key player in neuromodulation. Vesicle motion is in turn impeded by shutting off axonal actin polymerization, mediated by nitric oxide-cyclic GMP signaling leading to inhibition of RhoA. These findings provide a potential framework for coordinating post-and pre-synaptic strength, using retrograde regulation of axonal actin dynamics to mobilize and recruit presynaptic SV resources.
突触囊泡 (SVs) 可以在多个突触之间聚集,这引发了关于其用于神经递质传递和可塑性的动态分配的问题。我们发现,再循环囊泡的轴突运输不是由普遍存在的基于微管的运动支持的,而是依赖于肌动蛋白。从突触簇中释放的囊泡会经历约 1μm 的主动运输爆发,这是由附近肌动蛋白丝的延伸引发的。当连续的主动运输爆发通过自由扩散期连接时,就会出现长距离易位。蛋白激酶 A(神经调质的关键参与者)可迅速增加 SV 进行主动运输的能力。囊泡的运动反过来又受到阻断轴突肌动蛋白聚合的阻碍,这是由一氧化氮-环鸟苷酸信号介导的,导致 RhoA 抑制。这些发现为协调突触后和突触前强度提供了一个潜在的框架,使用逆行调节轴突肌动蛋白动力学来动员和招募突触前 SV 资源。