Suppr超能文献

振动光谱和成像:在组织工程中的应用。

Vibrational spectroscopy and imaging: applications for tissue engineering.

机构信息

Department of Bioengineering, Temple University, Philadelphia, PA, USA.

出版信息

Analyst. 2017 Oct 23;142(21):4005-4017. doi: 10.1039/c7an01055a.

Abstract

Tissue engineering (TE) approaches strive to regenerate or replace an organ or tissue. The successful development and subsequent integration of a TE construct is contingent on a series of in vitro and in vivo events that result in an optimal construct for implantation. Current widely used methods for evaluation of constructs are incapable of providing an accurate compositional assessment without destruction of the construct. In this review, we discuss the contributions of vibrational spectroscopic assessment for evaluation of tissue engineered construct composition, both during development and post-implantation. Fourier transform infrared (FTIR) spectroscopy in the mid and near-infrared range, as well as Raman spectroscopy, are intrinsically label free, can be non-destructive, and provide specific information on the chemical composition of tissues. Overall, we examine the contribution that vibrational spectroscopy via fiber optics and imaging have to tissue engineering approaches.

摘要

组织工程(TE)方法旨在再生或替代器官或组织。TE 构建体的成功开发和随后的整合取决于一系列体外和体内事件,这些事件导致了可植入的最佳构建体。目前广泛使用的构建体评估方法,如果不破坏构建体,就无法提供准确的成分评估。在这篇综述中,我们讨论了振动光谱评估在组织工程构建体组成评估中的贡献,包括在开发过程中和植入后的评估。中红外和近红外范围内的傅里叶变换红外(FTIR)光谱以及拉曼光谱本质上是无标记的,可以是非破坏性的,并提供有关组织化学成分的具体信息。总的来说,我们研究了通过光纤和成像的振动光谱对组织工程方法的贡献。

相似文献

1
Vibrational spectroscopy and imaging: applications for tissue engineering.
Analyst. 2017 Oct 23;142(21):4005-4017. doi: 10.1039/c7an01055a.
2
Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.
Molecules. 2021 Feb 9;26(4):922. doi: 10.3390/molecules26040922.
3
Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.
Biomaterials. 2017 Sep;140:128-137. doi: 10.1016/j.biomaterials.2017.06.015. Epub 2017 Jun 14.
4
Raman and Fourier transform infrared imaging for characterization of bone material properties.
Bone. 2020 Oct;139:115490. doi: 10.1016/j.bone.2020.115490. Epub 2020 Jun 20.
6
Spatial correlation of native and engineered cartilage components at micron resolution.
Ann N Y Acad Sci. 2019 Apr;1442(1):104-117. doi: 10.1111/nyas.13934. Epub 2018 Jul 29.
8
Approaches for Monitoring of Matrix Development in Hydrogel-Based Engineered Cartilage.
Tissue Eng Part C Methods. 2020 Apr;26(4):225-238. doi: 10.1089/ten.TEC.2020.0014. Epub 2020 Apr 3.
10
Compositional Assessment of Human Tracheal Cartilage by Infrared Spectroscopy.
Otolaryngol Head Neck Surg. 2018 Apr;158(4):688-694. doi: 10.1177/0194599817752310. Epub 2018 Jan 16.

引用本文的文献

1
Non-neotissue constituents as underestimated confounders in the assessment of tissue engineered constructs by near-infrared spectroscopy.
Mater Today Bio. 2023 Nov 28;24:100879. doi: 10.1016/j.mtbio.2023.100879. eCollection 2024 Feb.
2
Endothelial-mesenchymal transition induced by metastatic 4T1 breast cancer cells in pulmonary endothelium in aged mice.
Front Mol Biosci. 2022 Nov 24;9:1050112. doi: 10.3389/fmolb.2022.1050112. eCollection 2022.
3
Ultrastructural Characterization of Human Gingival Fibroblasts in 3D Culture.
Cells. 2022 Nov 17;11(22):3647. doi: 10.3390/cells11223647.
5
Nondestructive testing of native and tissue-engineered medical products: adding numbers to pictures.
Trends Biotechnol. 2022 Feb;40(2):194-209. doi: 10.1016/j.tibtech.2021.06.009. Epub 2021 Jul 24.
6
Infrared spectral microscopy as a tool to monitor lung fibrosis development in a model system.
Biomed Opt Express. 2020 Jun 25;11(7):3996-4007. doi: 10.1364/BOE.394730. eCollection 2020 Jul 1.
7
Approaches for Monitoring of Matrix Development in Hydrogel-Based Engineered Cartilage.
Tissue Eng Part C Methods. 2020 Apr;26(4):225-238. doi: 10.1089/ten.TEC.2020.0014. Epub 2020 Apr 3.
8
Spectroscopic Methods Used in Implant Material Studies.
Molecules. 2020 Jan 29;25(3):579. doi: 10.3390/molecules25030579.
9
Engineering Tissue Fabrication With Machine Intelligence: Generating a Blueprint for Regeneration.
Front Bioeng Biotechnol. 2020 Jan 10;7:443. doi: 10.3389/fbioe.2019.00443. eCollection 2019.

本文引用的文献

1
New approach in evaluation of ceramic-polymer composite bioactivity and biocompatibility.
Anal Bioanal Chem. 2017 Sep;409(24):5747-5755. doi: 10.1007/s00216-017-0518-0. Epub 2017 Jul 26.
2
Quantum Cascade Laser Spectral Histopathology: Breast Cancer Diagnostics Using High Throughput Chemical Imaging.
Anal Chem. 2017 Jul 18;89(14):7348-7355. doi: 10.1021/acs.analchem.7b00426. Epub 2017 Jul 3.
3
Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration.
Colloids Surf B Biointerfaces. 2017 Jul 1;155:477-486. doi: 10.1016/j.colsurfb.2017.04.042. Epub 2017 Apr 23.
4
Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold.
Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:752-759. doi: 10.1016/j.msec.2017.02.127. Epub 2017 Feb 27.
5
Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair.
Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:385-392. doi: 10.1016/j.msec.2017.02.040. Epub 2017 Feb 11.
6
Near-Infrared Spectroscopy Predicts Compositional and Mechanical Properties of Hyaluronic Acid-Based Engineered Cartilage Constructs.
Tissue Eng Part A. 2018 Jan;24(1-2):106-116. doi: 10.1089/ten.TEA.2017.0035. Epub 2017 May 15.
7
Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres.
J Control Release. 2017 Jun 28;256:19-25. doi: 10.1016/j.jconrel.2017.03.031. Epub 2017 Mar 22.
9
Recent advances in hydrogels for cartilage tissue engineering.
Eur Cell Mater. 2017 Jan 30;33:59-75. doi: 10.22203/eCM.v033a05.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验