Suppr超能文献

振动光谱在结缔组织分析中的应用。

Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.

机构信息

Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.

出版信息

Molecules. 2021 Feb 9;26(4):922. doi: 10.3390/molecules26040922.

Abstract

Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how "spectral fingerprints" can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.

摘要

振动光谱学的进展推动了人们对生物组织分子组成和结构的新认识。在这篇综述中,我们讨论了振动光谱学的常见模态和技术,并介绍了关键示例,说明它们如何被应用于丰富对结缔组织的评估。特别是,我们关注傅里叶变换红外(FTIR)、近红外(NIR)和拉曼光谱在评估软骨和骨骼特性方面的应用。我们介绍了每种方法的优缺点,并讨论了如何将光谱仪与显微镜(高光谱成像)和光纤探头结合使用,从而极大地推进了它们在生物医学中的应用。我们展示了这些模态如何用于评估几乎任何类型的样本(离体、原位或在体),以及如何解释“光谱指纹”来定量与组织组成和质量相关的结果。我们强调了振动光谱学作为一种无标记且通常是非破坏性的方法来评估与正常、发育、衰老、病理和治疗组织相关的细胞外基质(ECM)特性的无与伦比的优势。我们相信,这篇综述不仅将帮助读者更好地理解 FTIR、NIR 和拉曼光谱学的应用,还将帮助他们在自己的研究项目中实施这些方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16fc/7916244/62dad74f0b56/molecules-26-00922-g001.jpg

相似文献

1
Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.
Molecules. 2021 Feb 9;26(4):922. doi: 10.3390/molecules26040922.
3
Vibrational spectroscopy and imaging: applications for tissue engineering.
Analyst. 2017 Oct 23;142(21):4005-4017. doi: 10.1039/c7an01055a.
4
Characterization of connective tissues using near-infrared spectroscopy and imaging.
Nat Protoc. 2021 Feb;16(2):1297-1329. doi: 10.1038/s41596-020-00468-z. Epub 2021 Jan 18.
5
Raman and Fourier transform infrared imaging for characterization of bone material properties.
Bone. 2020 Oct;139:115490. doi: 10.1016/j.bone.2020.115490. Epub 2020 Jun 20.
6
Compositional Assessment of Human Tracheal Cartilage by Infrared Spectroscopy.
Otolaryngol Head Neck Surg. 2018 Apr;158(4):688-694. doi: 10.1177/0194599817752310. Epub 2018 Jan 16.
9
Application of vibrational spectroscopy to the study of mineralized tissues (review).
J Biomed Opt. 2000 Jul;5(3):259-68. doi: 10.1117/1.429994.
10
An empirical evaluation of three vibrational spectroscopic methods for detection of aflatoxins in maize.
Food Chem. 2015 Apr 15;173:629-39. doi: 10.1016/j.foodchem.2014.10.099. Epub 2014 Oct 27.

引用本文的文献

1
Biomolecule-functionalized dental implant surfaces: Towards augmenting soft tissue integration.
Bioact Mater. 2025 Jul 26;53:540-590. doi: 10.1016/j.bioactmat.2025.07.005. eCollection 2025 Nov.
2
The Multifactorial Relationship Between Bone Tissue Water and Stiffness at the Proximal Femur.
Calcif Tissue Int. 2025 Jan 23;116(1):33. doi: 10.1007/s00223-024-01327-9.
4
Rapid Hyperspectral Photothermal Mid-Infrared Spectroscopic Imaging from Sparse Data for Gynecologic Cancer Tissue Subtyping.
Anal Chem. 2024 Oct 8;96(40):15880-15887. doi: 10.1021/acs.analchem.4c01093. Epub 2024 Sep 23.
5
Multi-branch attention Raman network and surface-enhanced Raman spectroscopy for the classification of neurological disorders.
Biomed Opt Express. 2024 May 1;15(6):3523-3540. doi: 10.1364/BOE.514196. eCollection 2024 Jun 1.

本文引用的文献

1
Infrared Fiber-Optic Spectroscopy Detects Bovine Articular Cartilage Degeneration.
Cartilage. 2021 Dec;13(2_suppl):285S-294S. doi: 10.1177/1947603521993221. Epub 2021 Feb 20.
2
Characterization of connective tissues using near-infrared spectroscopy and imaging.
Nat Protoc. 2021 Feb;16(2):1297-1329. doi: 10.1038/s41596-020-00468-z. Epub 2021 Jan 18.
4
Tissue optical properties combined with machine learning enables estimation of articular cartilage composition and functional integrity.
Biomed Opt Express. 2020 Oct 19;11(11):6480-6494. doi: 10.1364/BOE.402929. eCollection 2020 Nov 1.
5
In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy.
Nat Commun. 2020 Dec 2;11(1):6172. doi: 10.1038/s41467-020-19827-1.
7
Spatially offset Raman spectroscopy for biomedical applications.
Chem Soc Rev. 2021 Jan 7;50(1):556-568. doi: 10.1039/d0cs00855a. Epub 2020 Nov 10.
9
DMOG Negatively Impacts Tissue Engineered Cartilage Development.
Cartilage. 2021 Dec;13(2_suppl):722S-733S. doi: 10.1177/1947603520967060. Epub 2020 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验