Suppr超能文献

无参考彩色视网膜图像质量指数。

No-reference quality index for color retinal images.

机构信息

Misr International University, Faculty of Engineering, Dept. of Electronics and Communication, Cairo, Egypt.

Ain Shams University, Faculty of Engineering, Dept. of Engineering Physics and Mathematics, Cairo, Egypt.

出版信息

Comput Biol Med. 2017 Nov 1;90:68-75. doi: 10.1016/j.compbiomed.2017.09.012. Epub 2017 Sep 20.

Abstract

Retinal image quality assessment (RIQA) is essential to assure that the images investigated by ophthalmologists or automatic systems are suitable for reliable medical diagnosis. Measure-based RIQA techniques have several advantages over the more commonly used binary classification-based RIQA methods. Numeric quality measures can aid ophthalmologists in associating a degree of confidence to the diagnosis performed through the investigation of a certain retinal image. Moreover, a numeric quality index can provide a mean for identifying the degree of enhancement required as well as to evaluate and compare the improvement achieved by enhancement techniques. In this work, a no-reference retinal image sharpness numeric quality index is introduced that is computed from the wavelet decomposition of the images. In order to account for the obscured retinal structures in unevenly illuminated image regions, the quality index is modified by a homogeneity parameter calculated from the previously introduced retinal image saturation channel. The proposed quality index was validated and tested on two datasets having different resolutions and quality grades. A strong (Spearman's coefficient > 0.8) and statistically highly significant (p-value < 0.001) correlation was found between the introduced quality index and the subjective human scores for the two different datasets. Moreover, multiclass classification using solely the devised retinal image quality index as a feature resulted in a micro average F-measure of 0.84 and 0.95 using the high and low resolution datasets, respectively. Several comparisons with other retinal image quality measures demonstrated superiority of the proposed quality index in both performance and speed.

摘要

视网膜图像质量评估(RIQA)对于确保眼科医生或自动系统所研究的图像适合可靠的医学诊断至关重要。基于测量的 RIQA 技术相对于更常用的基于二进制分类的 RIQA 方法具有多个优势。数值质量指标可以帮助眼科医生将一定程度的置信度与通过调查特定视网膜图像进行的诊断相关联。此外,数值质量指数可以提供一种方法来识别所需的增强程度,并评估和比较增强技术所获得的改进。在这项工作中,引入了一种基于小波分解的无参考视网膜图像锐度数值质量指数。为了考虑到不均匀照明图像区域中模糊的视网膜结构,通过从先前引入的视网膜图像饱和度通道计算的同质性参数对质量指数进行了修改。在所提出的质量指数在具有不同分辨率和质量等级的两个数据集上进行了验证和测试。对于两个不同的数据集,所提出的质量指数与主观人类评分之间存在很强的(Spearman 系数>0.8)和统计学上高度显著的(p 值<0.001)相关性。此外,仅使用设计的视网膜图像质量指数作为特征进行多类分类,分别使用高分辨率和低分辨率数据集获得了 0.84 和 0.95 的微平均 F 度量。与其他视网膜图像质量度量的几次比较表明,所提出的质量指数在性能和速度方面都具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验