Suppr超能文献

DFC-Net:一种用于视网膜图像质量评估的双路径频域交叉注意力融合网络。

DFC-Net: a dual-path frequency-domain cross-attention fusion network for retinal image quality assessment.

作者信息

Kui Xiaoyan, Hai Zeru, Zou Beiji, Liang Wei, Chen Liming

机构信息

School of Computer Science and Engineering, Central South University, Changsha 410083, Hunan, China.

School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.

出版信息

Biomed Opt Express. 2024 Oct 17;15(11):6399-6415. doi: 10.1364/BOE.531292. eCollection 2024 Nov 1.

Abstract

Retinal image quality assessment (RIQA) is crucial for diagnosing various eye diseases and ensuring the accuracy of diagnostic analyses based on retinal fundus images. Traditional deep convolutional neural networks (CNNs) for RIQA face challenges such as over-reliance on RGB image brightness and difficulty in differentiating closely ranked image quality categories. To address these issues, we introduced the Dual-Path Frequency-domain Cross-attention Network (DFC-Net), which integrates RGB images and contrast-enhanced images using contrast-limited adaptive histogram equalization (CLAHE) as dual inputs. This approach improves structure detail detection and feature extraction. We also incorporated a frequency-domain attention mechanism (FDAM) to focus selectively on frequency components indicative of quality degradations and a cross-attention mechanism (CAM) to optimize the integration of dual inputs. Our experiments on the EyeQ and RIQA-RFMiD datasets demonstrated significant improvements, achieving a precision of 0.8895, recall of 0.8923, F1-score of 0.8909, and a Kappa score of 0.9191 on the EyeQ dataset. On the RIQA-RFMiD dataset, the precision was 0.702, recall 0.6729, F1-score 0.6869, and Kappa score 0.7210, outperforming current state-of-the-art approaches.

摘要

视网膜图像质量评估(RIQA)对于诊断各种眼部疾病以及确保基于眼底视网膜图像的诊断分析的准确性至关重要。用于RIQA的传统深度卷积神经网络(CNN)面临诸多挑战,例如过度依赖RGB图像亮度以及难以区分质量排名相近的图像类别。为了解决这些问题,我们引入了双路径频域交叉注意力网络(DFC-Net),该网络使用对比度受限自适应直方图均衡化(CLAHE)将RGB图像和对比度增强图像作为双输入进行整合。这种方法改进了结构细节检测和特征提取。我们还纳入了频域注意力机制(FDAM)以选择性地关注指示质量下降的频率成分,以及交叉注意力机制(CAM)以优化双输入的整合。我们在EyeQ和RIQA-RFMiD数据集上的实验证明了显著的改进,在EyeQ数据集上实现了0.8895的精度、0.8923的召回率、0.8909的F1分数和0.9191的卡帕分数。在RIQA-RFMiD数据集上,精度为0.702,召回率为0.6729,F1分数为0.6869,卡帕分数为0.7210,优于当前的最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/11563343/0fb2e903354d/boe-15-11-6399-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验