Department of Ophthalmology, College of Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou, China.
Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China.
Acta Ophthalmol. 2018 May;96(3):e320-e326. doi: 10.1111/aos.13573. Epub 2017 Nov 1.
Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.
A new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.
The study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.
The relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis.
视网膜成像是检测视网膜疾病的一种重要且有效的工具。然而,由于眼睛像差的影响,退化的图像可能会掩盖病变,从而导致病变的眼睛被误诊为正常。在这项工作中,我们提出了一种新的图像增强方法,以提高退化图像的质量。
使用一种新的方法来增强退化的眼底图像。在该方法中,图像从输入的 RGB 颜色空间转换到 LAB 颜色空间,然后使用对比度受限的自适应直方图均衡化增强每个归一化的分量。基于人类视觉系统(HVS)的眼底图像质量评估与专家诊断相结合,用于评估增强效果。
该研究共纳入 143 名伴有光学介质混浊的受试者的 191 张退化眼底照片。图像增强的客观质量评估(范围:0-1)表明,我们的方法将彩色视网膜图像质量从平均 0.0773(方差 0.0801)提高到平均 0.3973(方差 0.0756)。增强后,青光眼分类器的曲线下面积(AUC)为 0.996,糖尿病视网膜病变(DR)分类器为 0.989,年龄相关性黄斑变性(AMD)分类器为 0.975,其他视网膜疾病分类器为 0.979。
用于增强退化眼底图像的相对简单的方法实现了卓越的图像增强,这在基于 HVS 的定性图像质量评估中得到了证明。因此,这种视网膜图像增强可以辅助眼科医生更有效地筛查视网膜疾病,并开发计算机辅助诊断。