Suppr超能文献

基于图索引的治疗性肽的计算预测。

Computational prediction of therapeutic peptides based on graph index.

机构信息

School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China.

School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China.

出版信息

J Biomed Inform. 2017 Nov;75:63-69. doi: 10.1016/j.jbi.2017.09.011. Epub 2017 Sep 27.

Abstract

As therapeutic peptides have been taken into consideration in disease therapy in recent years, many biologists spent time and labor to verify various functional peptides from a large number of peptide sequences. In order to reduce the workload and increase the efficiency of identification of functional proteins, we propose a sequence-based model, q-FP (functional peptide prediction based on the q-Wiener Index), capable of recognizing potentially functional proteins. We extract three types of features by mixing graphic representation and statistical indices based on the q-Wiener index and physicochemical properties of amino acids. Our support-vector-machine-based model achieves an accuracy of 96.71%, 93.34%, 98.40%, and 91.40% for anticancer, virulent, and allergenic proteins datasets, respectively, by using 5-fold cross validation.

摘要

近年来,随着治疗性肽在疾病治疗中的应用,许多生物学家花费大量时间和精力,从大量肽序列中验证各种功能肽。为了减少工作量并提高功能蛋白鉴定的效率,我们提出了一种基于序列的模型 q-FP(基于 q-维纳指数的功能肽预测),能够识别潜在的功能蛋白。我们通过混合基于 q-维纳指数和氨基酸理化性质的图形表示和统计指标,提取了三种类型的特征。通过 5 折交叉验证,我们的基于支持向量机的模型在抗癌、毒性和变应原性蛋白数据集上的准确率分别为 96.71%、93.34%、98.40%和 91.40%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验