Suppr超能文献

高血压:通过采用支持向量机预测的最佳宏量营养素饮食来限制 ACE-II 的表达。

Hypertension: Constraining the Expression of ACE-II by Adopting Optimal Macronutrients Diet Predicted via Support Vector Machine.

机构信息

Digby Stuart College, University of Roehampton, London SW15 5PU, UK.

Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA.

出版信息

Nutrients. 2022 Jul 7;14(14):2794. doi: 10.3390/nu14142794.

Abstract

The recent elevation of cases infected from novel COVID-19 has placed the human life in trepidation mode, especially for those suffering from comorbidities. Most of the studies in the last few months have undeniably raised concerns for hypertensive patients that face greater risk of fatality from COVID-19. Furthermore, one of the recent WHO reports has estimated a total of 1.13 billion people are at a risk of hypertension of which two-thirds live in low and middle income countries. The gradual escalation of the hypertension problem andthe sudden rise of COVID-19 cases have placed an increasingly higher number of human lives at risk in low and middle income countries. To lower the risk of hypertension, most physicians recommend drugs that have angiotensin-converting enzyme (ACE) inhibitors. However, prolonged use of such drugs is not recommended due to metabolic risks and the increase in the expression of ACE-II which could facilitate COVID-19 infection. In contrast, the intake of optimal macronutrients is one of the possible alternatives to naturally control hypertension. In the present study, a nontrivial feature selection and machine learning algorithm is adopted to intelligently predict the food-derived antihypertensive peptide. The proposed idea of the paper lies in reducing the computational power while retaining the performance of the support vector machine (SVM) by estimating the dominant pattern in the features space through feature filtering. The proposed feature filtering algorithm has reported a trade-off performance by reducing the chances of Type I error, which is desirable when recommending a dietary food to patients suffering from hypertension. The maximum achievable accuracy of the best performing SVM models through feature selection are 86.17% and 85.61%, respectively.

摘要

最近新型 COVID-19 感染病例的增加使人类生活处于恐慌状态,尤其是那些患有合并症的人。过去几个月的大多数研究无疑引起了高血压患者的关注,他们面临着更高的 COVID-19 死亡率风险。此外,世界卫生组织最近的一份报告估计,共有 11.3 亿人面临高血压风险,其中三分之二生活在中低收入国家。高血压问题的逐渐升级和 COVID-19 病例的突然增加,使中低收入国家越来越多的人的生命面临风险。为了降低高血压的风险,大多数医生建议使用具有血管紧张素转换酶 (ACE) 抑制剂的药物。然而,由于代谢风险和 ACE-II 表达增加,这些药物的长期使用并不推荐,因为这可能会促进 COVID-19 感染。相比之下,摄入最佳宏量营养素是自然控制高血压的一种可能替代方法。在本研究中,采用了一种非平凡的特征选择和机器学习算法,智能预测源自食物的降压肽。本文的想法在于通过特征过滤估计特征空间中的主导模式,从而在保留支持向量机 (SVM) 性能的同时降低计算能力。所提出的特征过滤算法通过降低推荐给高血压患者的饮食食物发生 I 类错误的可能性,实现了权衡性能,这是理想的。通过特征选择,表现最佳的 SVM 模型的最大可实现精度分别为 86.17%和 85.61%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90a8/9318145/93f70c87dbf1/nutrients-14-02794-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验