Suppr超能文献

行为的多项分析:统计方法

Multinomial analysis of behavior: statistical methods.

作者信息

Koster Jeremy, McElreath Richard

机构信息

Department of Anthropology, University of Cincinnati, Cincinnati, OH USA.

Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.

出版信息

Behav Ecol Sociobiol. 2017;71(9):138. doi: 10.1007/s00265-017-2363-8. Epub 2017 Aug 25.

Abstract

Behavioral ecologists frequently use observational methods, such as instantaneous scan sampling, to record the behavior of animals at discrete moments in time. We develop and apply multilevel, multinomial logistic regression models for analyzing such data. These statistical methods correspond to the multinomial character of the response variable while also accounting for the repeated observations of individuals that characterize behavioral datasets. Correlated random effects potentially reveal individual-level trade-offs across behaviors, allowing for models that reveal the extent to which individuals who regularly engage in one behavior also exhibit relatively more or less of another behavior. Using an example dataset, we demonstrate the estimation of these models using Hamiltonian Monte Carlo algorithms, as implemented in the package in the statistical environment. The supplemental files include a coding script and data that demonstrate auxiliary functions to prepare the data, estimate the models, summarize the posterior samples, and generate figures that display model predictions. We discuss possible extensions to our approach, including models with random slopes to allow individual-level behavioral strategies to vary over time and the need for models that account for temporal autocorrelation. These models can potentially be applied to a broad class of statistical analyses by behavioral ecologists, focusing on other polytomous response variables, such as behavior, habitat choice, or emotional states.

摘要

行为生态学家经常使用观察方法,如瞬时扫描取样,来记录动物在离散时刻的行为。我们开发并应用多级多项逻辑回归模型来分析此类数据。这些统计方法与响应变量的多项特征相对应,同时也考虑了行为数据集中个体的重复观测。相关随机效应可能揭示个体在不同行为之间的权衡,从而使模型能够揭示经常从事一种行为的个体在多大程度上也表现出相对更多或更少的另一种行为。通过一个示例数据集,我们展示了使用统计环境中的包所实现的哈密顿蒙特卡罗算法对这些模型进行估计。补充文件包括一个编码脚本和数据,展示了用于准备数据、估计模型、总结后验样本以及生成显示模型预测的图形的辅助函数。我们讨论了对我们方法可能的扩展,包括具有随机斜率的模型,以允许个体层面的行为策略随时间变化,以及对考虑时间自相关的模型的需求。这些模型有可能被行为生态学家应用于广泛的统计分析类别,重点关注其他多分类响应变量,如行为、栖息地选择或情绪状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd1/5594044/f4ea24a6809c/265_2017_2363_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验