Fletcher P Thomas, Lu Conglin, Pizer Stephen M, Joshi Sarang
Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
IEEE Trans Med Imaging. 2004 Aug;23(8):995-1005. doi: 10.1109/TMI.2004.831793.
A primary goal of statistical shape analysis is to describe the variability of a population of geometric objects. A standard technique for computing such descriptions is principal component analysis. However, principal component analysis is limited in that it only works for data lying in a Euclidean vector space. While this is certainly sufficient for geometric models that are parameterized by a set of landmarks or a dense collection of boundary points, it does not handle more complex representations of shape. We have been developing representations of geometry based on the medial axis description or m-rep. While the medial representation provides a rich language for variability in terms of bending, twisting, and widening, the medial parameters are not elements of a Euclidean vector space. They are in fact elements of a nonlinear Riemannian symmetric space. In this paper, we develop the method of principal geodesic analysis, a generalization of principal component analysis to the manifold setting. We demonstrate its use in describing the variability of medially-defined anatomical objects. Results of applying this framework on a population of hippocampi in a schizophrenia study are presented.
统计形状分析的一个主要目标是描述一群几何对象的变异性。计算此类描述的一种标准技术是主成分分析。然而,主成分分析存在局限性,即它仅适用于位于欧几里得向量空间中的数据。虽然这对于由一组地标或密集的边界点集合参数化的几何模型肯定足够了,但它无法处理更复杂的形状表示。我们一直在基于中轴线描述或 m 表示来开发几何表示。虽然中轴线表示为弯曲、扭曲和变宽方面的变异性提供了丰富的语言,但中轴线参数不是欧几里得向量空间的元素。它们实际上是非线性黎曼对称空间的元素。在本文中,我们开发了主测地线分析方法,这是主成分分析在流形设置下的推广。我们展示了它在描述中轴线定义的解剖对象变异性方面的用途。呈现了将此框架应用于精神分裂症研究中的一群海马体的结果。