Suppr超能文献

银纳米颗粒不会改变人类破骨细胞生成,但会诱导细胞摄取。

Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake.

作者信息

Pauksch Linda, Rohnke Marcus, Schnettler Reinhard, Lips Katrin S

机构信息

Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.

Institute for Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.

出版信息

Toxicol Rep. 2014 Oct 18;1:900-908. doi: 10.1016/j.toxrep.2014.10.012. eCollection 2014.

Abstract

Based on the increasing number of multi-drug resistant bacteria in periprosthetic infections, improvement of the antibacterial activity of commonly used biomaterials must be achieved. The broad-spectrum, high antimicrobial efficacy has made silver nanoparticles a promising new antibacterial agent. However, there is still a serious lack of knowledge concerning the impact of nanosilver on bone cells. For this reason a study was conducted to evaluate the influence of silver nanoparticles on osteoclastogenesis of human peripheral blood mononuclear cells. Upon incubation with subtoxic concentrations of nanosilver the cells did not exhibit changes in osteoclast differentiation and podosomal structures. However, the osteoclasts were able to uptake the nanoparticles, accumulating them in endo-lysosomal compartments. Furthermore, nanosilver exposure led to an increase in oxidative stress and a decrease in clathrin-dependent endocytosis on the mRNA level. In conclusion, our results indicate nanosilver-induced cell stress at higher concentrations. For this reason antibacterial benefits and possible health risks should be weighed in more detail in further studies.

摘要

基于假体周围感染中多重耐药菌数量的增加,必须提高常用生物材料的抗菌活性。银纳米颗粒具有广谱、高效的抗菌效果,成为一种很有前景的新型抗菌剂。然而,关于纳米银对骨细胞影响的知识仍然严重匮乏。因此,开展了一项研究来评估银纳米颗粒对人外周血单核细胞破骨细胞生成的影响。用亚毒性浓度的纳米银孵育后,细胞在破骨细胞分化和足体结构方面未表现出变化。然而,破骨细胞能够摄取纳米颗粒,并将它们积聚在内溶酶体区室中。此外,纳米银暴露导致氧化应激增加,且在mRNA水平上网格蛋白依赖性内吞作用减少。总之,我们的结果表明高浓度的纳米银会诱导细胞应激。因此,在进一步研究中应更详细地权衡抗菌益处和可能的健康风险。

相似文献

1
Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake.
Toxicol Rep. 2014 Oct 18;1:900-908. doi: 10.1016/j.toxrep.2014.10.012. eCollection 2014.
2
Synergistic toxicity of gentamicin- and nanosilver-doped polymethylmethacrylate bone cement on primary human osteoclasts.
Cells Tissues Organs. 2014;199(5-6):384-92. doi: 10.1159/000371341. Epub 2015 Feb 12.
3
Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture.
J Appl Toxicol. 2014 Nov;34(11):1155-66. doi: 10.1002/jat.2994. Epub 2014 Feb 12.
4
The biological effects and possible modes of action of nanosilver.
Rev Environ Contam Toxicol. 2013;223:81-106. doi: 10.1007/978-1-4614-5577-6_4.
5
Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles.
Acta Biomater. 2011 Sep;7(9):3505-14. doi: 10.1016/j.actbio.2011.05.030. Epub 2011 May 27.
7
Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells.
Acta Biomater. 2011 Jan;7(1):347-54. doi: 10.1016/j.actbio.2010.08.003. Epub 2010 Aug 13.
8
In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery.
Int J Nanomedicine. 2017 Jun 6;12:4285-4297. doi: 10.2147/IJN.S131163. eCollection 2017.
9
In vitro assessment of nanosilver-functionalized PMMA bone cement on primary human mesenchymal stem cells and osteoblasts.
PLoS One. 2014 Dec 8;9(12):e114740. doi: 10.1371/journal.pone.0114740. eCollection 2014.

引用本文的文献

1
Biocompatibility and Antibacterial Properties of NiTiAg Porous Alloys for Bone Implants.
ACS Omega. 2024 Jun 6;9(24):25638-25645. doi: 10.1021/acsomega.3c08163. eCollection 2024 Jun 18.
2
Osteoclasts at Bone Remodeling: Order from Order.
Results Probl Cell Differ. 2024;71:227-256. doi: 10.1007/978-3-031-37936-9_12.
3
Silver-integrated EDM processing of TiAl6V4 implant material has antibacterial capacity while optimizing osseointegration.
Bioact Mater. 2023 Sep 13;31:497-508. doi: 10.1016/j.bioactmat.2023.08.019. eCollection 2024 Jan.
4
Biophysical restriction of growth area using a monodispersed gold sphere nanobarrier prolongs the mitotic phase in HeLa cells.
RSC Adv. 2019 Nov 18;9(64):37497-37506. doi: 10.1039/c9ra08410j. eCollection 2019 Nov 13.
5
Recent review of the effect of nanomaterials on stem cells.
RSC Adv. 2018 May 15;8(32):17656-17676. doi: 10.1039/c8ra02424c. eCollection 2018 May 14.
6
Heterogeneity and Actin Cytoskeleton in Osteoclast and Macrophage Multinucleation.
Int J Mol Sci. 2020 Sep 10;21(18):6629. doi: 10.3390/ijms21186629.

本文引用的文献

1
2
Gentamicin in bone cement: A potentially more effective prophylactic measure of infectionin joint arthroplasty.
Bone Joint Res. 2013 Oct 15;2(10):220-6. doi: 10.1302/2046-3758.210.2000188. Print 2013.
4
Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts.
Acta Biomater. 2014 Jan;10(1):439-49. doi: 10.1016/j.actbio.2013.09.037. Epub 2013 Oct 3.
5
Periprosthetic joint infections at a teaching hospital in 1990-2007.
Can J Surg. 2012 Dec;55(6):394-400. doi: 10.1503/cjs.033610.
6
Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases.
Traffic. 2012 Oct;13(10):1307-14. doi: 10.1111/j.1600-0854.2012.01395.x. Epub 2012 Jul 24.
7
The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts.
J Cell Sci. 2012 Feb 1;125(Pt 3):662-72. doi: 10.1242/jcs.090886. Epub 2012 Feb 20.
8
In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations.
Nanotoxicology. 2013 Feb;7(1):30-6. doi: 10.3109/17435390.2011.626538. Epub 2011 Oct 21.
9
The bactericidal effect of silver nanoparticles.
Nanotechnology. 2005 Oct;16(10):2346-53. doi: 10.1088/0957-4484/16/10/059. Epub 2005 Aug 26.
10
Clathrin-dependent endocytosis of membrane-bound RANKL in differentiated osteoclasts.
Eur J Histochem. 2010 Mar 8;54(1):e6. doi: 10.4081/ejh.2010.e6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验