Suppr超能文献

使用虚拟语音控制的弹弓测量发声运动技能。

Measuring vocal motor skill with a virtual voice-controlled slingshot.

作者信息

Van Stan Jarrad H, Park Se-Woong, Jarvis Matthew, Mehta Daryush D, Hillman Robert E, Sternad Dagmar

机构信息

Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA.

出版信息

J Acoust Soc Am. 2017 Sep;142(3):1199. doi: 10.1121/1.5000233.

Abstract

Successful voice training (e.g., singing lessons) and vocal rehabilitation (e.g., therapy for a voice disorder) involve learning complex, vocal behaviors. However, there are no metrics describing how humans learn new vocal skills or predicting how long the improved behavior will persist post-therapy. To develop measures capable of describing and predicting vocal motor learning, a theory-based paradigm from limb motor control inspired the development of a virtual task where subjects throw projectiles at a target via modifications in vocal pitch and loudness. Ten subjects with healthy voices practiced this complex vocal task for five days. The many-to-one mapping between the execution variables pitch and loudness and resulting target error was evaluated using an analysis that quantified distributional properties of variability: Tolerance, noise, covariation costs (TNC costs). Lag-1 autocorrelation (AC1) and detrended-fluctuation-analysis scaling index (SCI) analyzed temporal aspects of variability. Vocal data replicated limb-based findings: TNC costs were positively correlated with error; AC1 and SCI were modulated in relation to the task's solution manifold. The data suggests that vocal and limb motor learning are similar in how the learner navigates the solution space. Future work calls for investigating the game's potential to improve voice disorder diagnosis and treatment.

摘要

成功的嗓音训练(如声乐课程)和嗓音康复(如嗓音障碍治疗)涉及学习复杂的发声行为。然而,目前尚无衡量人类如何学习新嗓音技能或预测治疗后改善行为能持续多久的指标。为了开发能够描述和预测嗓音运动学习的测量方法,一种基于肢体运动控制理论的范式启发了一项虚拟任务的开发,在该任务中,受试者通过改变音高和响度向目标投掷抛射物。十名嗓音健康的受试者练习这项复杂的嗓音任务达五天之久。使用一种量化变异性分布特性的分析方法(容忍度、噪声、协变成本(TNC成本))评估了执行变量音高和响度与由此产生的目标误差之间的多对一映射关系。滞后1自相关(AC1)和去趋势波动分析标度指数(SCI)分析了变异性的时间方面。嗓音数据重现了基于肢体的研究结果:TNC成本与误差呈正相关;AC1和SCI根据任务的解流形进行调制。数据表明,在学习者如何在解空间中导航方面,嗓音和肢体运动学习是相似的。未来的工作需要研究该游戏在改善嗓音障碍诊断和治疗方面的潜力。

相似文献

2
Quantitative Assessment of Learning and Retention in Virtual Vocal Function Exercises.虚拟嗓音功能训练中学习和保持的定量评估。
J Speech Lang Hear Res. 2021 Jan 14;64(1):1-15. doi: 10.1044/2020_JSLHR-20-00357. Epub 2020 Dec 7.
3
Singing ability is rooted in vocal-motor control of pitch.歌唱能力植根于音高的发声运动控制。
Atten Percept Psychophys. 2014 Nov;76(8):2522-30. doi: 10.3758/s13414-014-0732-1.

本文引用的文献

1
The many facets of motor learning and their relevance for Parkinson's disease.运动学习的多个方面及其与帕金森病的相关性。
Clin Neurophysiol. 2017 Jul;128(7):1127-1141. doi: 10.1016/j.clinph.2017.03.042. Epub 2017 Apr 9.
4
Error Correction and the Structure of Inter-Trial Fluctuations in a Redundant Movement Task.冗余运动任务中的错误纠正与试验间波动结构
PLoS Comput Biol. 2016 Sep 19;12(9):e1005118. doi: 10.1371/journal.pcbi.1005118. eCollection 2016 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验