Krogh-Madsen Trine, Christini David J
Greenberg Division of Cardiology, Weill Cornell Medicine, New York, New York 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10065, USA; and Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York 10065, USA.
Chaos. 2017 Sep;27(9):093907. doi: 10.1063/1.4999475.
Accumulation of intracellular Na is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na] in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na] accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na] impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na] becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na] may play complex roles in cellular and tissue-level cardiac dynamics.
细胞内钠离子的蓄积正逐渐被视为心肌细胞电生理学的重要调节因子。细胞内钠离子浓度可能是心脏动作电位持续时间的重要决定因素,可调节兴奋波在组织水平的传导,并可改变心律失常的易感性。心脏电生理学的数学模型通常纳入动态的细胞内钠离子浓度,其变化比其余变量要慢得多。我们在人类心房动作电位的数学模型中研究了几个与心律失常发生相关的因素对[Na]的依赖性。在细胞模拟中,我们发现[Na]蓄积使动作电位持续时间对几种电导变化具有稳定性,并且[Na]的缓慢动态变化影响向促心律失常后去极化的分岔,导致不同节律之间的间歇性。在螺旋波折返的持久组织模拟中,[Na]在空间上变得不均匀,在螺旋波旋转中心周围区域减小。这个异质区域形成一个功能锚点,导致螺旋波的曲折减少。我们的研究结果表明,[Na]的缓慢、生理性、速率依赖性变化可能在细胞和组织水平的心脏动力学中发挥复杂作用。