Krogh-Madsen Trine, Jacobson Anna F, Ortega Francis A, Christini David J
Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States.
Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.
Front Physiol. 2017 Dec 19;8:1059. doi: 10.3389/fphys.2017.01059. eCollection 2017.
cardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power. Using a recent human ventricular myocyte model, we demonstrate that model optimization to clinical long QT data, in conjunction with physiologically-based bounds on intracellular calcium and sodium concentrations, better constrains model parameters. To determine if the model optimized to congenital long QT data better predicts risk of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk, we tested the optimized model against a database of known arrhythmogenic and non-arrhythmogenic ion channel blockers. When doing so, the optimized model provided an improved risk assessment. In particular, we demonstrate an elimination of false-positive outcomes generated by the baseline model, in which simulations of non-torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our results underscore the importance of currents beyond those directly impacted by a drug block in determining torsadogenic risk. Our study also highlights the need for rich data in cardiac myocyte model optimization and substantiates such optimization as a method to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.
心肌细胞模型为药物安全性测试和预测离子通道突变的表型后果提供了强大的工具,但它们的准确性有时是有限的。例如,几个描述人类心室电生理学的模型在模拟长QT突变的影响时表现不佳。模型优化是获得具有更强预测能力的模型的一种方法。使用最近的人类心室肌细胞模型,我们证明,结合细胞内钙和钠浓度的基于生理学的界限,对临床长QT数据进行模型优化可以更好地约束模型参数。为了确定针对先天性长QT数据优化的模型是否能更好地预测药物诱导的长QT心律失常发生的风险,特别是尖端扭转型室速的风险,我们针对已知的致心律失常和非致心律失常离子通道阻滞剂数据库测试了优化后的模型。在这样做时,优化后的模型提供了改进的风险评估。特别是,我们证明消除了基线模型产生的假阳性结果,在基线模型中,非致尖端扭转型室速药物(特别是维拉帕米)的模拟预测了动作电位延长。我们的结果强调了除了直接受药物阻断影响的电流之外的电流在确定致尖端扭转型室速风险中的重要性。我们的研究还强调了在心肌细胞模型优化中丰富数据的必要性,并证实了这种优化作为一种生成对药物诱导的心脏毒性预测具有更高准确性的模型的方法。