Suppr超能文献

在由纤维化基质维持的持续性心房颤动的基于图像的计算模型中,折返驱动灶定位对电生理参数变异性的敏感性。

Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate.

作者信息

Deng Dongdong, Murphy Michael J, Hakim Joe B, Franceschi William H, Zahid Sohail, Pashakhanloo Farhad, Trayanova Natalia A, Boyle Patrick M

机构信息

Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

Chaos. 2017 Sep;27(9):093932. doi: 10.1063/1.5003340.

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, causing morbidity and mortality in millions worldwide. The atria of patients with persistent AF (PsAF) are characterized by the presence of extensive and distributed atrial fibrosis, which facilitates the formation of persistent reentrant drivers (RDs, i.e., spiral waves), which promote fibrillatory activity. Targeted catheter ablation of RD-harboring tissues has shown promise as a clinical treatment for PsAF, but the outcomes remain sub-par. Personalized computational modeling has been proposed as a means of non-invasively predicting optimal ablation targets in individual PsAF patients, but it remains unclear how RD localization dynamics are influenced by inter-patient variability in the spatial distribution of atrial fibrosis, action potential duration (APD), and conduction velocity (CV). Here, we conduct simulations in computational models of fibrotic atria derived from the clinical imaging of PsAF patients to characterize the sensitivity of RD locations to these three factors. We show that RDs consistently anchor to boundaries between fibrotic and non-fibrotic tissues, as delineated by late gadolinium-enhanced magnetic resonance imaging, but those changes in APD/CV can enhance or attenuate the likelihood that an RD will anchor to a specific site. These findings show that the level of uncertainty present in patient-specific atrial models reconstructed without any invasive measurements (i.e., incorporating each individual's unique distribution of fibrotic tissue from medical imaging alongside an average representation of AF-remodeled electrophysiology) is sufficiently high that a personalized ablation strategy based on targeting simulation-predicted RD trajectories alone may not produce the desired result.

摘要

心房颤动(AF)是最常见的持续性心律失常,在全球数百万患者中导致发病和死亡。持续性房颤(PsAF)患者的心房特征是存在广泛且分布的心房纤维化,这有利于形成持续性折返驱动因素(RDs,即螺旋波),进而促进颤动活动。对含有RDs的组织进行靶向导管消融已显示出作为PsAF临床治疗方法的前景,但治疗效果仍不尽人意。个性化计算建模已被提议作为一种非侵入性预测个体PsAF患者最佳消融靶点的方法,但目前尚不清楚RDs定位动力学如何受到心房纤维化空间分布、动作电位时程(APD)和传导速度(CV)的患者间变异性的影响。在此,我们在从PsAF患者临床成像中获取的纤维化心房计算模型中进行模拟,以表征RDs位置对这三个因素的敏感性。我们发现,如延迟钆增强磁共振成像所描绘的,RDs始终锚定在纤维化和非纤维化组织之间的边界,但APD/CV的变化可增强或减弱RDs锚定到特定部位的可能性。这些发现表明,在没有任何侵入性测量的情况下重建的患者特异性心房模型(即结合医学成像中每个个体独特的纤维化组织分布以及房颤重塑电生理的平均表示)中存在的不确定性水平足够高,以至于仅基于靶向模拟预测的RD轨迹的个性化消融策略可能无法产生预期结果。

相似文献

10
Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling.纤维化重塑中房颤的虚拟电生理研究
PLoS One. 2015 Feb 18;10(2):e0117110. doi: 10.1371/journal.pone.0117110. eCollection 2015.

引用本文的文献

本文引用的文献

1
Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation.心房颤动中心房纤维化的分子和细胞机制。
JACC Clin Electrophysiol. 2017 May;3(5):425-435. doi: 10.1016/j.jacep.2017.03.002. Epub 2017 May 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验