Suppr超能文献

在由纤维化基质维持的持续性心房颤动的基于图像的计算模型中,折返驱动灶定位对电生理参数变异性的敏感性。

Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate.

作者信息

Deng Dongdong, Murphy Michael J, Hakim Joe B, Franceschi William H, Zahid Sohail, Pashakhanloo Farhad, Trayanova Natalia A, Boyle Patrick M

机构信息

Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

Chaos. 2017 Sep;27(9):093932. doi: 10.1063/1.5003340.

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, causing morbidity and mortality in millions worldwide. The atria of patients with persistent AF (PsAF) are characterized by the presence of extensive and distributed atrial fibrosis, which facilitates the formation of persistent reentrant drivers (RDs, i.e., spiral waves), which promote fibrillatory activity. Targeted catheter ablation of RD-harboring tissues has shown promise as a clinical treatment for PsAF, but the outcomes remain sub-par. Personalized computational modeling has been proposed as a means of non-invasively predicting optimal ablation targets in individual PsAF patients, but it remains unclear how RD localization dynamics are influenced by inter-patient variability in the spatial distribution of atrial fibrosis, action potential duration (APD), and conduction velocity (CV). Here, we conduct simulations in computational models of fibrotic atria derived from the clinical imaging of PsAF patients to characterize the sensitivity of RD locations to these three factors. We show that RDs consistently anchor to boundaries between fibrotic and non-fibrotic tissues, as delineated by late gadolinium-enhanced magnetic resonance imaging, but those changes in APD/CV can enhance or attenuate the likelihood that an RD will anchor to a specific site. These findings show that the level of uncertainty present in patient-specific atrial models reconstructed without any invasive measurements (i.e., incorporating each individual's unique distribution of fibrotic tissue from medical imaging alongside an average representation of AF-remodeled electrophysiology) is sufficiently high that a personalized ablation strategy based on targeting simulation-predicted RD trajectories alone may not produce the desired result.

摘要

心房颤动(AF)是最常见的持续性心律失常,在全球数百万患者中导致发病和死亡。持续性房颤(PsAF)患者的心房特征是存在广泛且分布的心房纤维化,这有利于形成持续性折返驱动因素(RDs,即螺旋波),进而促进颤动活动。对含有RDs的组织进行靶向导管消融已显示出作为PsAF临床治疗方法的前景,但治疗效果仍不尽人意。个性化计算建模已被提议作为一种非侵入性预测个体PsAF患者最佳消融靶点的方法,但目前尚不清楚RDs定位动力学如何受到心房纤维化空间分布、动作电位时程(APD)和传导速度(CV)的患者间变异性的影响。在此,我们在从PsAF患者临床成像中获取的纤维化心房计算模型中进行模拟,以表征RDs位置对这三个因素的敏感性。我们发现,如延迟钆增强磁共振成像所描绘的,RDs始终锚定在纤维化和非纤维化组织之间的边界,但APD/CV的变化可增强或减弱RDs锚定到特定部位的可能性。这些发现表明,在没有任何侵入性测量的情况下重建的患者特异性心房模型(即结合医学成像中每个个体独特的纤维化组织分布以及房颤重塑电生理的平均表示)中存在的不确定性水平足够高,以至于仅基于靶向模拟预测的RD轨迹的个性化消融策略可能无法产生预期结果。

相似文献

2
Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern.
Cardiovasc Res. 2016 Jun 1;110(3):443-54. doi: 10.1093/cvr/cvw073. Epub 2016 Apr 7.
3
Arrhythmia dynamics in computational models of the atria following virtual ablation of re-entrant drivers.
Europace. 2018 Nov 1;20(suppl_3):iii45-iii54. doi: 10.1093/europace/euy234.
6
Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation.
J Electrocardiol. 2012 Nov-Dec;45(6):640-5. doi: 10.1016/j.jelectrocard.2012.08.005. Epub 2012 Sep 19.
10
Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling.
PLoS One. 2015 Feb 18;10(2):e0117110. doi: 10.1371/journal.pone.0117110. eCollection 2015.

引用本文的文献

1
Digital Twin Models in Atrial Fibrillation: Charting the Future of Precision Therapy?
J Pers Med. 2025 Jun 16;15(6):256. doi: 10.3390/jpm15060256.
3
Progress of Conductivity and Conduction Velocity Measured in Human and Animal Hearts.
Rev Cardiovasc Med. 2024 Oct 11;25(10):364. doi: 10.31083/j.rcm2510364. eCollection 2024 Oct.
5
A Review of Personalised Cardiac Computational Modelling Using Electroanatomical Mapping Data.
Arrhythm Electrophysiol Rev. 2024 May 20;13:e08. doi: 10.15420/aer.2023.25. eCollection 2024.
6
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
7
Patchy fibrosis promotes trigger-substrate interactions that both generate and maintain atrial fibrillation.
Interface Focus. 2023 Dec 15;13(6):20230041. doi: 10.1098/rsfs.2023.0041. eCollection 2023 Dec 6.
8
Computational Modeling and Simulation of the Fibrotic Human Atria.
Methods Mol Biol. 2024;2735:105-115. doi: 10.1007/978-1-0716-3527-8_6.
9
Up digital and personal: How heart digital twins can transform heart patient care.
Heart Rhythm. 2024 Jan;21(1):89-99. doi: 10.1016/j.hrthm.2023.10.019. Epub 2023 Oct 21.
10
Impact of noise on the instability of spiral waves in stochastic 2D mathematical models of human atrial fibrillation.
J Biol Phys. 2023 Dec;49(4):521-533. doi: 10.1007/s10867-023-09644-0. Epub 2023 Oct 4.

本文引用的文献

1
Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation.
JACC Clin Electrophysiol. 2017 May;3(5):425-435. doi: 10.1016/j.jacep.2017.03.002. Epub 2017 May 15.
3
Using personalized computer models to custom-tailor ablation procedures for atrial fibrillation patients: are we there yet?
Expert Rev Cardiovasc Ther. 2017 May;15(5):339-341. doi: 10.1080/14779072.2017.1317593. Epub 2017 Apr 17.
4
Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms.
Europace. 2016 Dec;18(suppl 4):iv146-iv155. doi: 10.1093/europace/euw365.
5
Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia.
Europace. 2016 Dec;18(suppl 4):iv136-iv145. doi: 10.1093/europace/euw358.
6
Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties.
PLoS Comput Biol. 2016 Aug 5;12(8):e1005060. doi: 10.1371/journal.pcbi.1005060. eCollection 2016 Aug.
7
Ablating atrial fibrillation: A translational science perspective for clinicians.
Heart Rhythm. 2016 Sep;13(9):1868-77. doi: 10.1016/j.hrthm.2016.05.026. Epub 2016 May 27.
8
Novel Radiofrequency Ablation Strategies for Terminating Atrial Fibrillation in the Left Atrium: A Simulation Study.
Front Physiol. 2016 Apr 12;7:108. doi: 10.3389/fphys.2016.00108. eCollection 2016.
10
Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging.
Circ Arrhythm Electrophysiol. 2016 Apr;9(4):e004133. doi: 10.1161/CIRCEP.116.004133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验