Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.
Trends Biotechnol. 2017 Dec;35(12):1169-1180. doi: 10.1016/j.tibtech.2017.09.001. Epub 2017 Sep 28.
Lateral flow assays (LFAs) are highly attractive for point-of-care (POC) diagnostics for infectious disease, food safety, and many other medical uses. The unique optical, electronic, and chemical properties that arise from the nanostructured and material characteristics of nanoparticles provide an opportunity to increase LFA sensitivity and impart novel capabilities. However, interfacing to nanomaterials in complex biological environments is challenging and can result in undesirable side effects such as non-specific adsorption, protein denaturation, and steric hindrance. These issues are even more acute in LFAs where there are many different types of inorganic-biological interfaces, often of a complex nature. Therefore, the unique properties of nanomaterials for LFAs must be exploited in a way that addresses these interface challenges.
侧向流检测(LFA)在传染病、食品安全和许多其他医学用途的即时诊断(POC)方面极具吸引力。纳米粒子的纳米结构和材料特性所产生的独特光学、电子和化学特性为提高 LFA 的灵敏度和赋予新功能提供了机会。然而,在复杂的生物环境中与纳米材料相互作用具有挑战性,并且可能导致不理想的副作用,例如非特异性吸附、蛋白质变性和空间位阻。在 LFA 中,这些问题更加严重,因为存在许多不同类型的无机-生物界面,而且通常具有复杂的性质。因此,必须以解决这些界面挑战的方式利用纳米材料在 LFA 中的独特特性。