Suppr超能文献

基于时空编码虚拟源阵列的多兆赫兹激光扫描单细胞荧光显微镜技术。

Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array.

作者信息

Wu Jianglai, Tang Anson H L, Mok Aaron T Y, Yan Wenwei, Chan Godfrey C F, Wong Kenneth K Y, Tsia Kevin K

机构信息

Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Road, Hong Kong, China.

出版信息

Biomed Opt Express. 2017 Aug 21;8(9):4160-4171. doi: 10.1364/BOE.8.004160. eCollection 2017 Sep 1.

Abstract

Apart from the spatial resolution enhancement, scaling of temporal resolution, equivalently the imaging throughput, of fluorescence microscopy is of equal importance in advancing cell biology and clinical diagnostics. Yet, this attribute has mostly been overlooked because of the inherent speed limitation of existing imaging strategies. To address the challenge, we employ an all-optical laser-scanning mechanism, enabled by an array of reconfigurable spatiotemporally-encoded virtual sources, to demonstrate ultrafast fluorescence microscopy at line-scan rate as high as 8 MHz. We show that this technique enables high-throughput single-cell microfluidic fluorescence imaging at 75,000 cells/second and high-speed cellular 2D dynamical imaging at 3,000 frames per second, outperforming the state-of-the-art high-speed cameras and the gold-standard laser scanning strategies. Together with its wide compatibility to the existing imaging modalities, this technology could empower new forms of high-throughput and high-speed biological fluorescence microscopy that was once challenged.

摘要

除了提高空间分辨率外,在推进细胞生物学和临床诊断方面,荧光显微镜的时间分辨率缩放(等同于成像通量)同样重要。然而,由于现有成像策略固有的速度限制,这一特性大多被忽视了。为应对这一挑战,我们采用了一种全光学激光扫描机制,该机制由一系列可重构的时空编码虚拟光源实现,以展示高达8 MHz线扫描速率的超快荧光显微镜。我们表明,该技术能够以每秒75,000个细胞的速度进行高通量单细胞微流控荧光成像,并以每秒3,000帧的速度进行高速细胞二维动态成像,优于目前最先进的高速相机和金标准激光扫描策略。再加上它与现有成像模式的广泛兼容性,这项技术可以催生曾经面临挑战的新型高通量和高速生物荧光显微镜。

相似文献

1
Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array.
Biomed Opt Express. 2017 Aug 21;8(9):4160-4171. doi: 10.1364/BOE.8.004160. eCollection 2017 Sep 1.
2
Ultrafast laser-scanning time-stretch imaging at visible wavelengths.
Light Sci Appl. 2017 Jan 27;6(1):e16196. doi: 10.1038/lsa.2016.196. eCollection 2017 Jan.
3
High-speed laser-scanning biological microscopy using FACED.
Nat Protoc. 2021 Sep;16(9):4227-4264. doi: 10.1038/s41596-021-00576-4. Epub 2021 Aug 2.
4
7
Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
Methods Mol Biol. 2016;1389:23-45. doi: 10.1007/978-1-4939-3302-0_3.
8
Line excitation array detection fluorescence microscopy at 0.8 million frames per second.
Nat Commun. 2018 Oct 29;9(1):4499. doi: 10.1038/s41467-018-06775-0.
9
28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging.
Biomed Opt Express. 2015 Sep 8;6(10):3855-64. doi: 10.1364/BOE.6.003855. eCollection 2015 Oct 1.
10
Hybrid dispersion laser scanner.
Sci Rep. 2012;2:445. doi: 10.1038/srep00445. Epub 2012 Jun 8.

引用本文的文献

1
Non-inertial scan angle multiplier for expanded fields-of-view.
bioRxiv. 2025 Jun 15:2025.06.13.659647. doi: 10.1101/2025.06.13.659647.
2
Imaging flow cytometry with a real-time throughput beyond 1,000,000 events per second.
Light Sci Appl. 2025 Feb 10;14(1):76. doi: 10.1038/s41377-025-01754-9.
3
Dual-view transport of intensity phase imaging flow cytometry.
Biomed Opt Express. 2023 Sep 14;14(10):5199-5207. doi: 10.1364/BOE.504863. eCollection 2023 Oct 1.
4
High-speed laser-scanning biological microscopy using FACED.
Nat Protoc. 2021 Sep;16(9):4227-4264. doi: 10.1038/s41596-021-00576-4. Epub 2021 Aug 2.
5
Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array.
Light Sci Appl. 2020 Jan 20;9:8. doi: 10.1038/s41377-020-0245-8. eCollection 2020.
6
Multi-ATOM: Ultrahigh-throughput single-cell quantitative phase imaging with subcellular resolution.
J Biophotonics. 2019 Jul;12(7):e201800479. doi: 10.1002/jbio.201800479. Epub 2019 Apr 1.
7
A Guide to Emerging Technologies for Large-Scale and Whole-Brain Optical Imaging of Neuronal Activity.
Annu Rev Neurosci. 2018 Jul 8;41:431-452. doi: 10.1146/annurev-neuro-072116-031458. Epub 2018 Apr 25.

本文引用的文献

1
Ultrafast laser-scanning time-stretch imaging at visible wavelengths.
Light Sci Appl. 2017 Jan 27;6(1):e16196. doi: 10.1038/lsa.2016.196. eCollection 2017 Jan.
3
Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics.
Nat Methods. 2015 Sep;12(9):827-30. doi: 10.1038/nmeth.3481. Epub 2015 Jul 27.
4
Single Molecules, Cells, and Super-Resolution Optics (Nobel Lecture).
Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8034-53. doi: 10.1002/anie.201501003. Epub 2015 Jun 18.
5
Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis.
Cell. 2014 Aug 28;158(5):1110-1122. doi: 10.1016/j.cell.2014.07.013.
6
Challenges in circulating tumour cell research.
Nat Rev Cancer. 2014 Sep;14(9):623-31. doi: 10.1038/nrc3820. Epub 2014 Jul 31.
7
Faster fluorescence microscopy: advances in high speed biological imaging.
Curr Opin Chem Biol. 2014 Jun;20:46-53. doi: 10.1016/j.cbpa.2014.04.008. Epub 2014 May 9.
9
Fast multicolor 3D imaging using aberration-corrected multifocus microscopy.
Nat Methods. 2013 Jan;10(1):60-3. doi: 10.1038/nmeth.2277. Epub 2012 Dec 9.
10
Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing.
Nat Methods. 2011 Feb;8(2):139-42. doi: 10.1038/nmeth.1552. Epub 2011 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验