Suppr超能文献

前额叶皮质对记忆形成的影响。

Prefrontal Cortex Contributions to the Development of Memory Formation.

机构信息

Department of Psychology, Wayne State University, Detroit, MI, USA.

Institute of Gerontology, Wayne State University, Detroit, MI, USA.

出版信息

Cereb Cortex. 2018 Sep 1;28(9):3295-3308. doi: 10.1093/cercor/bhx200.

Abstract

The development of the brain, particularly the protracted maturation of the prefrontal cortex (PFC), supports the development of episodic memory. Yet how different regions of the PFC functionally mature to support age-related increases in memory performance remains unclear. We investigated the PFC contribution to subsequent memory (SM) of encoded visual scenes in children, adolescents, and young adults (n = 83). We identified distinct patterns of PFC activations supporting SM: regions in the lateral PFC showed positive SM effects, whereas regions in the superior and medial PFC showed negative SM effects. Both positive and negative SM effects increased with age. The magnitude of negative SM effects in the superior PFC partially mediated the age-related increase in memory. Functional connectivity between lateral PFC and regions in the medial temporal lobe (MTL) increased with age during successful memory formation. In contrast, functional connectivity between the superior PFC and regions in the MTL decreased with age, suggesting an age-related increase in the anti-correlation between these regions. These findings highlight the differential involvement of regions within the PFC supporting memory formation.

摘要

大脑的发育,特别是前额叶皮层(PFC)的长期成熟,支持了情景记忆的发展。然而,PFC 的不同区域如何在功能上成熟以支持与年龄相关的记忆表现的提高仍不清楚。我们研究了 PFC 对儿童、青少年和年轻人(n = 83)编码视觉场景的后续记忆(SM)的贡献。我们确定了支持 SM 的 PFC 激活的不同模式:外侧 PFC 中的区域显示出正的 SM 效应,而上侧和内侧 PFC 中的区域显示出负的 SM 效应。正的和负的 SM 效应都随着年龄的增长而增加。上侧 PFC 中的负 SM 效应的大小部分介导了记忆与年龄相关的增加。在成功的记忆形成过程中,外侧 PFC 与内侧颞叶(MTL)区域之间的功能连接随着年龄的增长而增加。相比之下,上侧 PFC 与 MTL 区域之间的功能连接随着年龄的增长而减少,这表明这些区域之间的反相关关系随着年龄的增长而增加。这些发现强调了 PFC 内支持记忆形成的不同区域的参与。

相似文献

1
Prefrontal Cortex Contributions to the Development of Memory Formation.
Cereb Cortex. 2018 Sep 1;28(9):3295-3308. doi: 10.1093/cercor/bhx200.
2
Age-Related Compensatory Reconfiguration of PFC Connections during Episodic Memory Retrieval.
Cereb Cortex. 2021 Jan 5;31(2):717-730. doi: 10.1093/cercor/bhaa192.
4
Contributions of primate prefrontal cortex and medial temporal lobe to temporal-order memory.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13555-13560. doi: 10.1073/pnas.1712711114. Epub 2017 Nov 30.
5
Task-related activity in prefrontal cortex and its relation to recognition memory performance in young and old adults.
Neuropsychologia. 2005;43(10):1466-81. doi: 10.1016/j.neuropsychologia.2004.12.016. Epub 2005 Mar 23.
6
Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding.
J Neurosci. 2010 Nov 3;30(44):14676-84. doi: 10.1523/JNEUROSCI.3250-10.2010.
7
Development of the declarative memory system in the human brain.
Nat Neurosci. 2007 Sep;10(9):1198-205. doi: 10.1038/nn1950. Epub 2007 Aug 5.
8
Neural activation patterns of successful episodic encoding: Reorganization during childhood, maintenance in old age.
Dev Cogn Neurosci. 2016 Aug;20:59-69. doi: 10.1016/j.dcn.2016.06.003. Epub 2016 Jun 29.
9
Maturation of medial temporal lobe response and connectivity during memory encoding.
Brain Res Cogn Brain Res. 2005 Sep;25(1):379-85. doi: 10.1016/j.cogbrainres.2005.07.007.
10
Fiber density between rhinal cortex and activated ventrolateral prefrontal regions predicts episodic memory performance in humans.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5408-13. doi: 10.1073/pnas.1013287108. Epub 2011 Mar 14.

引用本文的文献

1
Association between theta-band resting-state functional connectivity and declarative memory abilities in children.
Imaging Neurosci (Camb). 2025 May 7;3. doi: 10.1162/imag_a_00555. eCollection 2025.
2
The development of aperiodic neural activity in the human brain.
Nat Hum Behav. 2025 Jul 21. doi: 10.1038/s41562-025-02270-x.
3
Self-referential encoding in the developing brain.
Dev Cogn Neurosci. 2025 Jun 6;74:101581. doi: 10.1016/j.dcn.2025.101581.
4
Reinstatement and transformation of memory traces for recognition.
Sci Adv. 2025 Feb 21;11(8):eadp9336. doi: 10.1126/sciadv.adp9336. Epub 2025 Feb 19.
5
Developmental improvements in the ability to benefit from testing across middle childhood.
Front Behav Neurosci. 2024 Dec 18;18:1501866. doi: 10.3389/fnbeh.2024.1501866. eCollection 2024.
6
The development of aperiodic neural activity in the human brain.
bioRxiv. 2024 Nov 9:2024.11.08.622714. doi: 10.1101/2024.11.08.622714.
7
Exploring the late maturation of an intrinsic episodic memory network: A resting-state fMRI study.
Dev Cogn Neurosci. 2024 Dec;70:101453. doi: 10.1016/j.dcn.2024.101453. Epub 2024 Sep 26.
8
Cortical and white matter substrates supporting visuospatial working memory.
Clin Neurophysiol. 2024 Jun;162:9-27. doi: 10.1016/j.clinph.2024.03.008. Epub 2024 Mar 18.
9
From vision to memory: How scene-sensitive regions support episodic memory formation during child development.
Dev Cogn Neurosci. 2024 Feb;65:101340. doi: 10.1016/j.dcn.2024.101340. Epub 2024 Jan 5.
10
Extra-hippocampal contributions to pattern separation.
Elife. 2023 Mar 27;12:e82250. doi: 10.7554/eLife.82250.

本文引用的文献

1
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5. doi: 10.1073/pnas.1602413113. Epub 2016 Jun 28.
3
From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes.
Neuropsychologia. 2016 Jan 8;80:142-156. doi: 10.1016/j.neuropsychologia.2015.11.017. Epub 2015 Nov 23.
4
Sensitivity of negative subsequent memory and task-negative effects to age and associative memory performance.
Brain Res. 2015 Jul 1;1612:16-29. doi: 10.1016/j.brainres.2014.09.045. Epub 2014 Sep 28.
5
Hippocampal-neocortical functional reorganization underlies children's cognitive development.
Nat Neurosci. 2014 Sep;17(9):1263-9. doi: 10.1038/nn.3788. Epub 2014 Aug 17.
6
Age-related differences in brain activity in the subsequent memory paradigm: a meta-analysis.
Neurosci Biobehav Rev. 2014 Sep;45:246-57. doi: 10.1016/j.neubiorev.2014.06.006. Epub 2014 Jun 26.
7
The relationship between task-related and subsequent memory effects.
Hum Brain Mapp. 2014 Aug;35(8):3687-700. doi: 10.1002/hbm.22430. Epub 2014 Feb 14.
8
Dissociable roles of default-mode regions during episodic encoding.
Neuroimage. 2014 Apr 1;89:244-55. doi: 10.1016/j.neuroimage.2013.11.050. Epub 2013 Dec 6.
9
Selective development of anticorrelated networks in the intrinsic functional organization of the human brain.
J Cogn Neurosci. 2014 Mar;26(3):501-13. doi: 10.1162/jocn_a_00517. Epub 2013 Nov 4.
10
Development of deactivation of the default-mode network during episodic memory formation.
Neuroimage. 2014 Jan 1;84:932-8. doi: 10.1016/j.neuroimage.2013.09.032. Epub 2013 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验