Suppr超能文献

形态约束和数据驱动的出芽酵母细胞分割。

Morphologically constrained and data informed cell segmentation of budding yeast.

机构信息

SynthSys-Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.

School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.

出版信息

Bioinformatics. 2018 Jan 1;34(1):88-96. doi: 10.1093/bioinformatics/btx550.

Abstract

MOTIVATION

Although high-content image cytometry is becoming increasingly routine, processing the large amount of data acquired during time-lapse experiments remains a challenge. The majority of approaches for automated single-cell segmentation focus on flat, uniform fields of view covered with a single layer of cells. In the increasingly popular microfluidic devices that trap individual cells for long term imaging, these conditions are not met. Consequently, most techniques for segmentation perform poorly. Although potentially constraining the generalizability of software, incorporating information about the microfluidic features, flow of media and the morphology of the cells can substantially improve performance.

RESULTS

Here we present DISCO (Data Informed Segmentation of Cell Objects), a framework for using the physical constraints imposed by microfluidic traps, the shape based morphological constraints of budding yeast and temporal information about cell growth and motion to allow tracking and segmentation of cells in microfluidic devices. Using manually curated datasets, we demonstrate substantial improvements in both tracking and segmentation when compared with existing software.

AVAILABILITY AND IMPLEMENTATION

The MATLAB code for the algorithm and for measuring performance is available at https://github.com/pswain/segmentation-software and the test images and the curated ground-truth results used for comparing the algorithms are available at http://datashare.is.ed.ac.uk/handle/10283/2002.

CONTACT

mcrane2@uw.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

尽管高内涵图像细胞计数技术变得越来越常规,但处理延时实验中获取的大量数据仍然是一个挑战。大多数用于自动单细胞分割的方法都集中在具有单层细胞的平坦、均匀的视场。在越来越流行的用于长期成像的微流控设备中,这些条件并不满足。因此,大多数分割技术表现不佳。尽管可能限制软件的通用性,但结合微流控特征、介质流动和细胞形态的信息可以显著提高性能。

结果

在这里,我们提出了 DISCO(基于数据的细胞对象分割),这是一种利用微流控陷阱所施加的物理约束、出芽酵母的基于形状的形态约束以及细胞生长和运动的时间信息来允许在微流控设备中跟踪和分割细胞的框架。使用手动编辑数据集,我们证明了与现有软件相比,在跟踪和分割方面都有了显著的改进。

可用性和实现

算法的 MATLAB 代码和用于测量性能的代码可在 https://github.com/pswain/segmentation-software 上获得,用于比较算法的测试图像和编辑好的真实数据结果可在 http://datashare.is.ed.ac.uk/handle/10283/2002 上获得。

联系方式

mcrane2@uw.edu

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验