Suppr超能文献

一种全自动、鲁棒且通用的长时酵母出芽分割和追踪算法。

A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking.

机构信息

Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America.

Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America.

出版信息

PLoS One. 2019 Mar 27;14(3):e0206395. doi: 10.1371/journal.pone.0206395. eCollection 2019.

Abstract

Live cell time-lapse microscopy, a widely-used technique to study gene expression and protein dynamics in single cells, relies on segmentation and tracking of individual cells for data generation. The potential of the data that can be extracted from this technique is limited by the inability to accurately segment a large number of cells from such microscopy images and track them over long periods of time. Existing segmentation and tracking algorithms either require additional dyes or markers specific to segmentation or they are highly specific to one imaging condition and cell morphology and/or necessitate manual correction. Here we introduce a fully automated, fast and robust segmentation and tracking algorithm for budding yeast that overcomes these limitations. Full automatization is achieved through a novel automated seeding method, which first generates coarse seeds, then automatically fine-tunes cell boundaries using these seeds and automatically corrects segmentation mistakes. Our algorithm can accurately segment and track individual yeast cells without any specific dye or biomarker. Moreover, we show how existing channels devoted to a biological process of interest can be used to improve the segmentation. The algorithm is versatile in that it accurately segments not only cycling cells with smooth elliptical shapes, but also cells with arbitrary morphologies (e.g. sporulating and pheromone treated cells). In addition, the algorithm is independent of the specific imaging method (bright-field/phase) and objective used (40X/63X/100X). We validate our algorithm's performance on 9 cases each entailing a different imaging condition, objective magnification and/or cell morphology. Taken together, our algorithm presents a powerful segmentation and tracking tool that can be adapted to numerous budding yeast single-cell studies.

摘要

活细胞延时显微镜技术是一种广泛用于研究单细胞中基因表达和蛋白质动态的技术,依赖于对单个细胞进行分割和跟踪以生成数据。该技术可以提取的数据的潜力受到限制,原因是无法从这些显微镜图像中准确地分割大量细胞并对其进行长时间跟踪。现有的分割和跟踪算法要么需要专门针对分割的额外染料或标记物,要么高度特定于一种成像条件和细胞形态,或者需要手动校正。在这里,我们介绍了一种用于芽殖酵母的全自动、快速且强大的分割和跟踪算法,该算法克服了这些限制。通过一种新颖的自动化播种方法实现了全自动操作,该方法首先生成粗略的种子,然后使用这些种子自动微调细胞边界,并自动纠正分割错误。我们的算法可以在不使用任何特定染料或生物标志物的情况下准确地分割和跟踪单个酵母细胞。此外,我们展示了如何利用现有的专门用于感兴趣的生物学过程的通道来改善分割。该算法具有通用性,不仅可以准确地分割具有光滑椭圆形的循环细胞,还可以分割具有任意形态的细胞(例如,进行孢子形成和激素处理的细胞)。此外,该算法独立于特定的成像方法(明场/相差)和使用的物镜(40X/63X/100X)。我们在 9 种不同的成像条件、物镜放大倍数和/或细胞形态的情况下对算法的性能进行了验证。总的来说,我们的算法提供了一种强大的分割和跟踪工具,可以适应许多芽殖酵母单细胞研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9ac/6436761/4b859cb00ee8/pone.0206395.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验