Suppr超能文献

基于生物约束优化的秀丽隐杆线虫胚胎细胞膜分割

Biologically constrained optimization based cell membrane segmentation in C. elegans embryos.

作者信息

Azuma Yusuke, Onami Shuichi

机构信息

Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.

出版信息

BMC Bioinformatics. 2017 Jun 19;18(1):307. doi: 10.1186/s12859-017-1717-6.

Abstract

BACKGROUND

Recent advances in bioimaging and automated analysis methods have enabled the large-scale systematic analysis of cellular dynamics during the embryonic development of Caenorhabditis elegans. Most of these analyses have focused on cell lineage tracing rather than cell shape dynamics. Cell shape analysis requires cell membrane segmentation, which is challenging because of insufficient resolution and image quality. This problem is currently solved by complicated segmentation methods requiring laborious and time consuming parameter adjustments.

RESULTS

Our new framework BCOMS (Biologically Constrained Optimization based cell Membrane Segmentation) automates the extraction of the cell shape of C. elegans embryos. Both the segmentation and evaluation processes are automated. To automate the evaluation, we solve an optimization problem under biological constraints. The performance of BCOMS was validated against a manually created ground truth of the 24-cell stage embryo. The average deviation of 25 cell shape features was 5.6%. The deviation was mainly caused by membranes parallel to the focal planes, which either contact the surfaces of adjacent cells or make no contact with other cells. Because segmentation of these membranes was difficult even by manual inspection, the automated segmentation was sufficiently accurate for cell shape analysis. As the number of manually created ground truths is necessarily limited, we compared the segmentation results between two adjacent time points. Across all cells and all cell cycles, the average deviation of the 25 cell shape features was 4.3%, smaller than that between the automated segmentation result and ground truth.

CONCLUSIONS

BCOMS automated the accurate extraction of cell shapes in developing C. elegans embryos. By replacing image processing parameters with easily adjustable biological constraints, BCOMS provides a user-friendly framework. The framework is also applicable to other model organisms. Creating the biological constraints is a critical step requiring collaboration between an experimentalist and a software developer.

摘要

背景

生物成像和自动分析方法的最新进展使得对秀丽隐杆线虫胚胎发育过程中的细胞动态进行大规模系统分析成为可能。这些分析大多集中在细胞谱系追踪而非细胞形状动态上。细胞形状分析需要细胞膜分割,由于分辨率和图像质量不足,这具有挑战性。目前这个问题通过需要费力且耗时的参数调整的复杂分割方法来解决。

结果

我们的新框架BCOMS(基于生物约束优化的细胞膜分割)实现了秀丽隐杆线虫胚胎细胞形状的自动提取。分割和评估过程都是自动化的。为了实现评估自动化,我们在生物约束下解决了一个优化问题。BCOMS的性能通过与手动创建的24细胞期胚胎的地面真值进行验证。25个细胞形状特征的平均偏差为5.6%。偏差主要是由与焦平面平行的膜引起的,这些膜要么与相邻细胞表面接触,要么不与其他细胞接触。由于即使通过人工检查这些膜的分割也很困难,所以自动分割对于细胞形状分析来说足够准确。由于手动创建的地面真值数量必然有限,我们比较了两个相邻时间点之间的分割结果。在所有细胞和所有细胞周期中,25个细胞形状特征的平均偏差为4.3%,小于自动分割结果与地面真值之间的偏差。

结论

BCOMS实现了秀丽隐杆线虫发育胚胎中细胞形状的准确自动提取。通过用易于调整的生物约束代替图像处理参数,BCOMS提供了一个用户友好的框架。该框架也适用于其他模式生物。创建生物约束是一个关键步骤,需要实验人员和软件开发人员之间的合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd6f/5477254/e7ed990ee7a7/12859_2017_1717_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验